xgboost 可视化与结果分析

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/lanchunhui/article/details/89008560

xgboost 的可视化,调用 xgb.to_graphviz 或 xgb.plot_tree 接口;

1. 指定 fmap(feature map)

https://www.kaggle.com/mmueller/xgb-feature-importance-python

  • 按照 feature map 的格式,编写 fmap 文件:

    def ceate_feature_map(features, fmap_filename):
        outfile = open(fmap_filename, 'w')
        i = 0
        for feat in features:
            outfile.write('{0}\t{1}\tq\n'.format(i, feat))
            i = i + 1
    
        outfile.close()
    
    # 调用
    fmap_filename = 'xgb.fmap'
    create_feature_map(X_train.columns, fmap_filename)
    
  • 将 xgb.fmap 文件传入 xgb.plot_tree 文件中:

    xgb.plot_tree(bst, fmap=fmap_filename)
    
  • 指定图像的大小:

    fig = ptl.gcf()
    fig.set_size_inches(150, 100)
    

2. 结果分析

  • bst.get_dump()

    • 查看各棵树的结构;
  • bst.predict 的参数:

    • pred_leaf=True,各棵树对各个样本的预测的叶子;
展开阅读全文

没有更多推荐了,返回首页