
tensorflow深度神经网络
五道口纳什
wx公众号/B站:五道口纳什
展开
-
TensorFlow 实现深度神经网络 —— Denoising Autoencoder
完整代码请见 models/DenoisingAutoencoder.py at master · tensorflow/models · GitHub;1. Denoising Autoencoder 类设计与构造函数简单起见,这里仅考虑一种单隐层的去噪自编码器结构; 即整个网络拓扑结构为:输入层,单隐层,输出层; 输入层 ⇒ 单隐层,可视为编码的过程,需要非线性的激励函数;原创 2017-03-26 19:18:50 · 5019 阅读 · 0 评论 -
Xavier Initialization 的理解与推导(及实现)
在 caffe mnist tutorial 的实现中,有如下的语句:weight_filter = {type: "xavier"};随后的解释中指出,本实现将使用 xavier 算法通过输入和输出神经元的数目自动确定权值矩阵的初始化大小。原创 2017-04-21 15:34:25 · 17460 阅读 · 0 评论 -
tensorflow 下的滑动平均模型 —— tf.train.ExponentialMovingAverage
在采用随机梯度下降算法训练神经网络时,使用 tf.train.ExponentialMovingAverage 滑动平均操作的意义在于提高模型在测试数据上的健壮性(robustness)。tensorflow 下的 tf.train.ExponentialMovingAverage 需要提供一个衰减率(decay)。该衰减率用于控制模型更新的速度。该衰减率用于控制模型更新的速度,Expon...转载 2017-04-26 15:21:35 · 14345 阅读 · 9 评论 -
Inception V3 的 tensorflow 实现
首先来看 Inception V3 的模型架构图: 共 46 层,由 11 个 Inception Modules (模块,图中类似圆角矩形圈出的部分)构成, 如上图示,所谓的一个 Inception Module 即是对同一个输入,分别执行不同的卷积、池化等操作,最终将这些得到的输出 concat(拼接)出一个层次极深的网络;拼接时,如何保证各个操作的输出矩阵大小一致呢(深度可以不同原创 2017-05-19 19:14:16 · 4965 阅读 · 0 评论