
智力题
五道口纳什
wx公众号/B站:五道口纳什
展开
-
顺时针 vs 逆时针
(1)正面是顺时针,反面则是逆时针;反之亦然;原创 2016-07-06 15:36:36 · 1732 阅读 · 0 评论 -
移动火柴问题
14-1+1=3 将加号的一横,竖放置于前面 ⇒ 114-111=3;原创 2016-08-28 12:53:02 · 2669 阅读 · 0 评论 -
【智力题】拿硬币(数数字)、游戏
神奇的取模运算。什么是拿硬币(数数字)游戏?原创 2016-06-23 17:29:11 · 4430 阅读 · 0 评论 -
【智力题】称重问题
1. 8 个球称 2 次先 3vs3(剩余 1vs1):如果相等,则有问题(较轻/较重)的锁定在剩余的 1vs1,否则锁定在某一个 3 上,任取其中的 2 个, 如果平衡,问题锁定在另外一个否则,也可直接确定;原创 2016-06-23 23:27:14 · 1712 阅读 · 0 评论 -
Python 数据结构与算法 —— 哈弗曼树
从扩充二叉树到哈弗曼树二叉树结点的定义哈弗曼树结点的定义哈弗曼的实现所依赖的数据结构原创 2016-09-01 11:55:33 · 1100 阅读 · 0 评论 -
硬币趣味题
1. 分堆有 100 枚平放在桌上的硬币,其中 10 枚正面朝上,90 枚反面朝上,不看不摸不能用任何方式区分硬币正面。如何将它们分成两堆,且每堆正面朝上的硬币数目相同。任意取出 10 枚硬币(x 正,10-x 反,则原始的 10 枚正面向上的硬币还剩 10-x),再对这取出的 10 枚硬币全部反转得 x 反,10-x 正,因此相等。原创 2016-09-04 21:22:03 · 1277 阅读 · 0 评论 -
博弈论与逻辑思维(传教士与妻子忠贞的问题)
博弈论里有个概念叫做 common knowledge(共同知识), 真要是解释起来,可以长篇大论说上几个小时。不过有个故事便于理解它, 也可以说这是一个测试逻辑的故事,看看你有没有能力把最终的现象解释清楚。1. 问题故事发生在一个村庄,村里有100对夫妻,他们都是地道的逻辑学家(智能的);村里有一些奇特的风俗:每天晚上,村里的男人们都将点起篝火,绕圈围坐举行会议,议题是谈论自己的妻子。在会议开始时原创 2016-07-10 18:54:10 · 7244 阅读 · 0 评论 -
直线分割平面问题(数学归纳法)
试问平面上 nn 条彼此相交而无三者共点的直线能够把平面分割成多少部分?我们先从简单的事实出发,设平面分为 SnS_n 部分,n=1n=1,Sn=2S_n=2n=2n=2,Sn=4S_n=4n=3n=3,Sn=7S_n=7n=4n=4,Sn=11S_n=11n=5n=5,Sn=15S_n=15由观察发现:S1=1+1S2=1+1+2S3=1+1+2+3S_1=1+1\\S_2=1+1原创 2016-06-20 20:45:58 · 9498 阅读 · 1 评论 -
四则运算、数字与等式(数字游戏)
123456789=1001\;2\;3\;4\;5\;6\;7\;8\;9=100(1)1+2+3+4+5+6+7+(8×9)=1001+2+3+4+5+6+7+\left(8\times 9\right)=100(2)123−45−67+89=100123-45-67+89=100原创 2016-07-23 20:58:51 · 2042 阅读 · 0 评论 -
脑筋急转弯的歧义性
歧义性也即存在多种解释。原创 2016-09-28 11:20:09 · 1220 阅读 · 0 评论 -
找规律 —— 英文篇
1. JASON、SUN ?JFMAFJJASOND 十二个月份首字母;MVEMJSUNP Mercury:水星;Venus:金星(爱与美之神);Earth:地球;Mars:火星;Jupiter:木星(宙斯神);Saturn:土星(农业之神);Uranus:天王星;Neptune:海王星;Pluto:冥王星;原创 2016-11-11 18:29:31 · 1534 阅读 · 0 评论 -
数学智力题总结
1. 有借有还3 和空酒瓶盖可以换一批啤酒,10 瓶啤酒可以再买几瓶?这里首先问一个问题,2 瓶啤酒最终能喝几瓶啤酒?不是两瓶。可以先问人要一个瓶盖,这样凑够 3 个瓶盖又能换一瓶,完了再还过去,也即 2 瓶啤酒能喝 3 瓶,这样 10 瓶啤酒能喝 15 瓶。原创 2017-02-24 21:33:09 · 976 阅读 · 0 评论 -
先有鸡还是先有蛋的争论
1. 三个解释先有鸡,那么鸡从何来?蛋孵出来的,那岂不是蛋比鸡早;先有蛋,那么蛋从何来?鸡生的,那岂不是鸡又比蛋早;也许你会说,世界上没有最早的鸡,也没有最早的蛋。鸡生蛋,蛋生鸡,可以上追到无穷远,故不存在这一问题。 这种说法仍然是错误的,科学告诉我们,万物都有历史。大量的事实证明,地球不是从来就有的,地球上的生物也不是从来就有的。鸡和蛋也并非就是从来就有的,故地球上应当存在第一只鸡和第一个原创 2017-02-24 22:22:11 · 1573 阅读 · 0 评论 -
字谜
1. 入门版比大多一点:太比马多一点:乌比马云多一点:乌云家中多一口:豪原创 2016-07-30 17:07:40 · 1735 阅读 · 0 评论 -
奇妙的等式 && 精妙的证明
1. 等差数列的和与组合数1+2+⋯+(n−1)=(n2)1+2+\cdots+\left(n-1\right)=\binom n2等式的奇妙性在于:建立起等差数列与组合数的关系。来看一个精妙的证明: 对最后一行任取两个做组合,正好唯一对应于一个黄圆(全部的黄圆即为等式的左端)。遍历所有组合,可正好取。2. 2 的幂次与组合数的和(n0)+(n1)+⋯+(nn)=2n\binom n0+原创 2016-07-04 18:35:29 · 4630 阅读 · 0 评论 -
鸽笼原理应用举例
鸽笼原理及其应用1. 9 个人戴两顶颜色的帽子9 个人戴两顶颜色的帽子,则一定有 1 种颜色的帽子,被选择 5 次以上。原创 2016-06-24 22:53:01 · 3523 阅读 · 0 评论 -
puzzles —— 111、222、333、444、555、666、777、888、999
为等式左边的三个相等的数字添加合适的运算符号(包括指数),使等号成立:1 1 1 = 62 2 2 = 63 3 3 = 64 4 4 = 65 5 5 = 66 6 6 = 67 7 7 = 68 8 8 = 69 9 9 = 6方案:(1+1+1)!\left(1+1+1\right)!2+2+22+2+23×3−33\times 3-34!÷4×404!\div 4原创 2016-08-01 17:39:16 · 6108 阅读 · 0 评论 -
斐波那契数列连续十项的和
f1,f2,f3,f4,f5,f6,f7,f8,f9,f10f_1,f_2,f_3,f_4,f_5,f_6,f_7,f_8,f_9,f_{10}不限制起点,也即对 f1,f2f_1, f_2的值不要求为标准的 0,1/1,1,取值随意。不妨设:f1=x,f2=yf_1=x,f_2=y,则有:f1=xf_1=xf2=yf_2=y f3=x+yf_3=x+yf4=x+2yf_4=x+2yf原创 2016-06-24 11:39:10 · 2522 阅读 · 0 评论 -
神奇的数字“9”
先看 9 的九九乘法表:1×9=91\times 9 = 9 2×9=182\times 9=183×9=273\times 9=274×9=364\times 9=365×9=455\times 9=456×9=546\times 9=547×9=637\times 9=638×9=728\times 9=729×9=819\times 9=81观察可知:(1)乘积的结果个原创 2016-06-24 12:08:46 · 2231 阅读 · 0 评论 -
数学小魔术 —— 猜数字(二)(我回来了)
数学小魔术——猜数字 请你的同伴随便选一个两位数(当然不告诉你是什么数字),然后要求他从这个数中任意减去一个一位数(1-9,随便哪个都可),把差值乘上 9,得出该乘积之后,再加上原来选定的那个数目,把最后得到的数告诉你。此时你便可以神奇的猜出你的同伴选出的两位数(窍门在于:将结果的末位数字加到前面的两位数字上)。譬如说,最开始选定的数是 53,不妨让该数字减去 6, (53−6)×9+53=476原创 2016-06-24 12:25:59 · 12068 阅读 · 0 评论 -
【脑筋急转弯】—— 谁是诚实人?
一、问题有 5 个人,其中 4 个是善变者,1 个是诚实者。善变者的特点是,如果第 1 次撒谎,则第 2 次会讲真,反之,如果第 1 次讲真,第 2 次就会撒谎。诚实者自然说的都是真话,那么如何仅通过 2 个问题的提问,就能找出谁是诚实者。二、分析问第 1 个问题时,因为对 5 个人没有任何的了解,选出的人一定是任意的,随机的,所以不必纠结第 1 个问题的人选第一个问题的提问应当能够为我们第二个原创 2016-06-24 22:24:28 · 3204 阅读 · 2 评论 -
【脑经急转弯】—— 猜额头上的数字
一、问题把3个逻辑学家放进房间里面,在3个逻辑学家头上写上3个不同的数字,其中某个数字是其他两个数字之和。A 看见了 B 额头上写了 20, C额头上写了 30A:我无法确定我头上写的是多少? B:我无法确定我额头上写的是什么? C:我无法确定我额头上写的是什么?A:我知道了 问:A额头上写的是多少?二、分析 充分利用所给信息; 学会分情况讨论;三、答案A 根据 B 的 20,C原创 2016-06-24 23:35:35 · 4225 阅读 · 0 评论 -
【脑经急转弯】—— 灯亮还是灭?
一、问题100 个灯泡,起始全是灭的。执行 100 次步骤:第i次步骤,对i,2*i,3*i 。。的灯全部切换一下开关(灭的开等,亮的关灯)最后有多少灯是亮的二、分析最终灯灭还是灯灭与等被切换的次数是偶数还是奇数直接相关。偶数:灯亮奇数:灯灭三、答案 学会找规律,并抽象出结论。1:1,2,3。。。1002:2,4,6。。。1003:3,6,9。。。99。。。50:50,10051原创 2016-06-24 23:55:21 · 1719 阅读 · 0 评论 -
【脑筋急转弯】—— 在网格中移动
一、题目n*m网格,从(1,1)走到(n,m)有多少种走法?只能向下或向右走一步二、分析可以通过一个较小的输入,来简化问题的分析。无论怎么走,一共要移动 n+m-2 步,从左上到右下,这是确定的。每一步,都有两种选择,向右或者向下,最终向下是 n-1,向右是 m-1,这也是确定的。三、答案(n+m−2m−1)=(n+m−2n−1)\binom{n+m-2}{m-1}=\binom{n+m-2原创 2016-06-25 00:01:43 · 971 阅读 · 0 评论 -
减法(minus)的研究
1. 尾数的循环变化比如给学校的一卡通,充值 100.00 元,分辨率在分一级。只有学校的澡堂的扣费是按时间 5 分 5 分地扣费的,最终的尾数(分),只可能在 0/5 之间循环。尾数是 9、4:9/4尾数是 8、3:8/3尾数是 7、2:7/2尾数是 6、1:6/1尾数是 5、0:5/0原创 2016-06-30 22:11:46 · 1878 阅读 · 0 评论 -
容斥原理 —— 不重不漏的计数
容斥原理(Principle of inclusion-exclusion)一般应用于集合,主要对重叠部分(overlap)的处理。在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为原创 2016-07-04 17:40:17 · 2062 阅读 · 0 评论 -
大小和尺寸的概念
1. 人头发丝的直径0.02毫米-0.12毫米,一般为0.05-0.08毫米,还要看个体差异;原创 2016-07-07 11:07:16 · 1569 阅读 · 0 评论 -
月份的研究
1. 阳历1.1 31 天的月份1、3、5、7、8、10、12,31 天用不差。1.2 30 天的月份2(平年,闰年)、4、6、9、11没有两个连续的月份的天数是 30 天7 月和 8 月的天数都是 31 天原创 2016-07-07 15:00:59 · 875 阅读 · 0 评论 -
打印机的工作原理
如果最后出现空白页,则一定是双面打印,一定是奇数页;还是双面打印的情况,如果某一页的正面为奇数,则所有页的正面均为奇数;1. 双面打印比如 1-5 页需要打印,则手动式双面打印时的顺序是: 5 ⇒ 3 ⇒ 1 ⇒ 2 ⇒ 4 ⇒ 空白。也即,先是奇数页的倒序,然后是偶数页的正序。每一个双面的正反面,关于中心对称,如 1与2,3与4,5与空白。原创 2016-07-08 15:12:24 · 2969 阅读 · 0 评论 -
【智力题】牛顿问题
牛顿问题:有一牧场,已知:养牛 27 头,6 天把草吃完,养牛 23 头,9 天把草吃完,如果养牛 21 头,那么几天把牧场上的草吃完 ?原创 2016-06-23 16:18:41 · 1220 阅读 · 2 评论 -
骰子的研究
骰子最重要的特性:相对两面的点数之和为 7.原创 2016-06-23 18:14:34 · 995 阅读 · 0 评论 -
生活中的数学 —— 操场几何学
1. 绿茵场尺寸FIFA国际足球场面积标准规格: 场地:长105米、宽68米; 球门:长7.32米、高2.44米; 大禁区(罚球区):长40.32米、宽16.5米,在底线距离球门柱16.5米; 小禁区(球门区):长18.32米、宽5.5米,在底线距离球门柱5.5米; 中圈区:半径9.15米; 角球区:半径1米、距离大禁区13.84米; 罚球弧:以点球点为中心、半径9.15原创 2016-07-04 21:47:10 · 2439 阅读 · 0 评论 -
非常规四则运算
1. 热身1234 = 0, 1027=1, 1069=3, 2471=?数数字中圆圈(或者闭合区域)的个数:0 ⇒ 1, 6 ⇒ 1, 8 ⇒ 2, 9⇒ 1显然 2471 中没有任何闭合区域;原创 2016-09-18 22:31:31 · 2001 阅读 · 0 评论