
数学分析
五道口纳什
wx公众号/B站:五道口纳什
展开
-
常见反函数、反函数导数(微分)公式
0. 反函数基本认识互为反函数之反函数的相互性:g(x)g(x) 是 f(x)f(x) 的反函数,则 f(x)f(x) 也是 g(x)g(x) 的反函数; f(g(x))=xf(g(x))=x, g(f(x))=xg(f(x))=x1. 反函数导数公式MORE RULES FOR DERIVATIVES如果函数 g(x)g(x) 是 f(x)f(x) 的反函数,那么就有:dgdx=1df(g原创 2017-09-16 17:12:40 · 40844 阅读 · 0 评论 -
数列收敛与数列极限
sequence,数列;series,级数(对数列求和)单调有界函数必收敛;单调增有上界,收敛;单调减有下界,收敛;1. 有趣的序列不单调但收敛;原创 2016-11-07 23:59:00 · 2721 阅读 · 0 评论 -
数学辨异 —— 泰勒展开与等比数列求和
11−x\frac{1}{1-x}1. 泰勒展开根据:(1+z)α=1+αz+α(α−1)2!z2+α(α−1)(α−2)3!z3+⋯+α(α−1)⋯(α−n+1)n!zn+⋯,|z|<1\left(1+z\right)^\alpha=1+\alpha z+\frac{\alpha\left(\alpha-1\right)}{2!}z^2+\frac{\alpha\left(\alpha-1\原创 2017-01-18 13:16:42 · 5755 阅读 · 0 评论 -
泰勒公式与泰勒展开
泰勒公式可以将难以理解的函数转变成易于处理的多项式。 泰勒公式是用多项式函数去逼近光滑函数(无穷次可微函数)的方法之一。 1. 常见泰勒展开 注意泰勒展开的条件。原创 2016-06-24 09:57:04 · 8516 阅读 · 0 评论 -
从傅里叶级数到傅里叶变换
1. 傅里叶级数傅里叶级数的关键词是正交,正交,正交; 第一式,第四式,第五式:积分函数都为偶函数,在对称区间上,为单侧区间的二倍,尽管如此,考虑三角函数的特殊性,就是在单侧区间,其值仍为 0;原创 2016-11-14 00:43:12 · 1542 阅读 · 0 评论 -
三角函数
1. cos(θ)+sin(θ)的取值范围原创 2016-06-28 18:08:22 · 1061 阅读 · 0 评论 -
微积分经典概念:极限、连续与函数
从极限(数列极限)出发 ==》 导数 ==》 定积分(黎曼积分)==》无穷级数原创 2016-01-19 11:07:01 · 1509 阅读 · 0 评论 -
下确界和上确界
下确界:infimum,最大下界,floor:地板的顶;上确界:supremum,最小上界,ceiling:天花板的底;1.原创 2016-09-02 16:00:48 · 24893 阅读 · 0 评论 -
原函数与反函数
1. 反函数存在定理严格单调函数(比如 cdf,累积分布函数)必定有严格单调的反函数,并且二者单调性相同。2. 反函数性质函数 f(x)f(x) 与它的反函数 f−1(x)f^{-1}(x) 图象关于直线 y=xy=x 对称;原创 2016-12-18 12:54:12 · 5078 阅读 · 0 评论 -
函数的微分表
1. 初等函数反三角函数:f(x)=arctanxf(x)=\arctan x ⇒ f′(x)=11+x2f'(x)=\frac{1}{1+x^2}原创 2016-11-09 15:08:55 · 1260 阅读 · 0 评论 -
不定积分表
微积分:处理运动和变化的数学(行星的轨道,流体的运动);(1)计算瞬时速度(微分)原创 2016-07-26 21:57:42 · 3806 阅读 · 0 评论 -
重温微积分 —— 偏微分与链式法则
偏(partial)针对的是多变量微分,原创 2016-08-11 13:01:10 · 14101 阅读 · 1 评论 -
对数的应用 —— 数位(digits)的个数
对数基本定理及应用 对数基本公式与定理1. 将除法改造为减法运算logab=loga−logb\log{\frac ab}=\log a -\log b原创 2016-06-26 11:24:33 · 1304 阅读 · 0 评论 -
样条函数(spline function)—— 分段多项式函数(piecewise polynomial function)
1. 分段多项式函数 样条函数是某种意义上的分段函数。Spline (mathematics) - Wikipedia最简单的样条函数是一种分段多项式函数(piecewise polynomial function),样条函数 S:[a,b]→RS:[a, b]\rightarrow \mathbb R。SS 是在定义域 [a,b][a, b] 上分段定义的,我们将 [a,b][a, b] 划原创 2017-07-21 19:17:31 · 29462 阅读 · 1 评论 -
二重积分的计算 —— 交换积分顺序(exchange the order of integration)
交换积分顺序的诀窍在数形结合;1. 几句顺口溜后积先定限,限内穿条线,先交下限写,后交上限见先积 x,画横线(平行于 x 轴),右减左; 先积 y,画竖线(平行于 y 轴),上减下;2. 简单举例Examples of changing the order of integration in double integrals∫10∫ey1f(x,y)dxdy. \int_0^1 \int原创 2017-07-20 15:50:08 · 90552 阅读 · 6 评论 -
导数的定义、性质及计算(导数的定义式计算)
定义设函数 y=f(x) 在点 x0 的某个邻域内有定义,当自变量 x 在 x0 处有增量 Δx,x0+Δx也在该邻原创 2016-10-19 17:54:06 · 30692 阅读 · 0 评论 -
单位阶跃函数(Heaviside/unit step function)—— 化简分段函数
注意,单位阶跃函数一种不连续函数。1. 常见定义最经典的定义来自于 Ramp function(斜坡函数,max{x,0}\max \{x,0\})的微分形式;原创 2017-05-13 17:20:20 · 19101 阅读 · 0 评论 -
凸函数与简森不等式(Jensen's inequality)
logAB=−logBA\log \frac AB=-\log \frac BAconvex function (凸函数) 弦在弧上,也即如上图所示: λf(x1)+(1−λ)f(x2)≥f(λx1+(1−λ)x2)\lambda f(x_1)+(1-\lambda)f(x_2)\geq f(\lambda x_1+(1-\lambda)x_2) −log(x)-\log(x) 负对原创 2016-01-08 14:48:35 · 17882 阅读 · 0 评论 -
积分与坐标变换(极坐标)
1. 极坐标变换原创 2016-08-08 22:41:20 · 20215 阅读 · 0 评论 -
正割函数(sec)
1. 定义正割与余弦互为倒数,余割与正弦互为倒数。即:⎧⎩⎨⎪⎪⎪⎪secθ=1cosθcscθ=1sinθ\left\{\begin{split}\secθ=\frac1{\cosθ} \\\cscθ=\frac1{\sinθ}\end{split}\right. 也即在几何上,设 △ABC△ABC,∠C=90°,AC=b,BC=a,AB=c,正割函数:sec∠A=c/b(斜边/邻边)原创 2017-02-22 10:05:02 · 59936 阅读 · 0 评论 -
不定积分
1. 定义∀x∈I\forall x\in I(II 表区间),都有 F′(x)=f(x)F'(x)=f(x),则称 F(x)F(x) 是 f(x)f(x) 在 II 上的一个原函数;∫f(x)dx=F(x)+c\int f(x)dx=F(x)+c从多个方面去理解同一个定义概念本身,才算得上真正的理解:若 ∃x0∈I\exists x_0\in I,使得 F′(x0)≠f(x0)F'(x_0)原创 2016-11-22 00:52:59 · 1050 阅读 · 0 评论 -
求导的训练
1. 求导原创 2016-11-13 12:47:59 · 1377 阅读 · 0 评论 -
拉普拉斯方程与复微分
对于 z=x+iyz=x+iy,有 f(z)=u+ivf(z)=u+iv,则 f(⋅)f(\cdot) 是复可微的,当且仅当它的偏导数满足所谓的柯西-黎曼方程,原创 2016-09-29 11:43:52 · 1559 阅读 · 0 评论 -
斯托克斯定理(Stokes' theorem)
1. 几种形式原创 2016-10-24 23:09:28 · 10892 阅读 · 0 评论 -
从和式积分到定积分
1. 把定积分定义为积分和的极限原创 2016-09-28 11:12:03 · 11345 阅读 · 0 评论 -
计算积分的方法 —— 分布积分
常数的不定积分:∫1dx=x+c\int 1 dx=x+c1. 定理(分布积分法定理)原创 2016-10-09 16:43:16 · 3614 阅读 · 0 评论 -
微积分 —— 有限覆盖定理
假想闭区间 [0, 1](开区间 (0, 1) 不符合有限覆盖定理的要求) 里的每个点(无数个点)都是一个小人儿,下雨时,他们撑起无数的小伞(表示左右的邻域),小伞为每个小人都很好地遮了雨。有限覆盖定理说的是:此时没有必要用无穷多把伞,从这些伞里一定可以挑出有限把伞,其他的收起来,照样可以遮雨。比如下面的一串伞(重叠区间): (13,1),(14,12),(15,13),(16,14),…,(1n原创 2016-08-13 18:44:27 · 2052 阅读 · 0 评论 -
微积分的计算
1. 定积分以 x 为积分变量,上减下以 y 为积分变量,右减左2. 二重积分可将二重积分化为累次积分;3. 举例考虑下面两个随机变量和的分布 Z=X+YZ=X+Y: FZ(z)=∫∞−∞[∫z−y−∞f(x,y)dx]dyF_Z(z)=\int_{-\infty}^{\infty}\left[\int_{-\infty}^{z-y}f(x,y)dx\right]dy固定 zz原创 2016-08-24 16:12:35 · 3222 阅读 · 0 评论 -
等价、偏序和全序
全序集是任意两个元素都可以比较的偏序集。良序集(well order)是任意非空子集都有最小元的全序集。1. 等价设 RR 是某个集合 A 上的一个二元关系。若 R 满足以下条件:自反性:∀x∈A, xRx\forall x \in A,~~x R x对称性:∀x,y∈A, xRy ⟹ yRx\forall x, y \in A,~~ x R y ~~ \implies ~~y R原创 2016-08-16 14:55:39 · 12763 阅读 · 0 评论 -
多项式的研究
1. 多项式逼近一维函数多项式只涉及乘法和加法,项数也不是太多;(指数函数,三角函数等其他函数在计算机运算时,做的是级数求和,是十分慢的)实现的方法:插值,3 个点 ⇒ 2 阶多项式;原创 2016-08-07 17:26:39 · 1461 阅读 · 5 评论 -
张量(tensor)的理解
1. 从标量到矢量:携带更丰富的信息 矢,是箭的意思,突出的特点是其指向性。袋子里有几个球? 3 个,magnitude(幅度,没有单位);从这到你家多远?3 km(denominate),3 称为 scalars,标量,或叫纯量;从这如何到达你的家里?步行 3km,显然是不够的,除了距离(distance)或者幅值(magnitude)外,还需要方向。具有了方向的距离,就是 vectors原创 2016-11-06 10:14:11 · 6879 阅读 · 0 评论 -
级数的定义及敛散性的证明
首先要区别的是级数(series)和数列(sequence)的概念,序列是不同的数的组合,级数则是这些元素的和式。1. 级数将数列 unu_n 的项 u1,u2,…,un,…,依次用加号连接起来的函数。数项级数的简称。原创 2016-10-17 17:39:33 · 6974 阅读 · 0 评论 -
中值定理
f(x)f(x) 在闭区间 [0,1][0, 1] 上,f(0)=0,f(1)=π4f(0)=0, f(1)=\frac\pi4,证明存在 ξ\xi 使得 (1+ξ2)f′(ξ)=1(1+\xi^2)f'(\xi)=1令 F(x)=f(x)−arctanxF(x)=f(x)-\arctan x,所以有 F(0)=F(1)F(0)=F(1),所以存在一个 ξ\xi,F′(ξ)=0F'(\xi)=0,也原创 2016-11-12 00:20:22 · 1546 阅读 · 0 评论 -
不可积分的函数、定积分可积不可积
1. 不可积分不可积分函数正态分布函数的密度函数是不可积的,虽然它的原函数(即不定积分)存在,但不能用初等函数表达出来。习惯上,如果一个已给的连续函数的原函数能用初等函数表达出来,就说这函数是“积得出的函数”,否则就说它是“积不出”的函数。比如下面列出的几个积分都是属于“积不出”的函数,但是这些积分在概率论,数论,光学,傅里叶分析等领域起着重要作用。原创 2016-11-10 21:03:55 · 24740 阅读 · 0 评论 -
可积的判定(充分条件,必要条件)
1. 必要条件若函数 ff 在 [a, b] 上可积,则 ff 在 [a, b] 上必有界; 反证法,逆否命题,无界 ⇒ 不可积;若 ff 在 [a, b] 上无界,则对于 [a, b] 的任一分割 T,比存在属于 T 的某个小区间 Δk\Delta_k,ff 在 Δk\Delta_k 上无界,在 i≠ki\neq k 的各个小区间 Δk\Delta_k 上(区间内)任意取定 ξi\xi_i,原创 2016-11-10 19:25:52 · 39666 阅读 · 0 评论 -
多元函数(multivariate function)分析(方向导数和梯度)
1. 方向导数与梯度2. 几种特殊类型的函数的梯度公式原创 2016-11-10 12:37:03 · 7668 阅读 · 0 评论 -
极值点、驻点、鞍点、拐点
极值点:函数从递增变换到递减,或者从递减变换到递增的点极值点不一定是驻点,驻点要求一阶导数必须存在,而极值点对导数没有要求。原创 2016-09-11 17:23:49 · 33154 阅读 · 5 评论 -
微积分 —— 曲率与曲率半径
曲率半径,衡量曲线的弯曲程度;曲率的倒数就是曲率半径:R=1KR=\frac 1K平面曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度。κ=lim|Δα/Δs|κ=\lim|Δα/Δs|Δs 趋向于 0 的时候,定义 κ(Kappa)就是曲率。原创 2016-07-17 09:36:38 · 12208 阅读 · 1 评论 -
极限的求法
1. 0/0 洛必达原创 2016-10-28 15:24:03 · 1282 阅读 · 0 评论 -
零点定理、介值定理
介值定理,也叫中间值定理。原创 2016-11-08 13:10:19 · 12956 阅读 · 0 评论