PLC PID优化系列之非线性参数整定(FC函数)

本文介绍了PLC PID控制器中非线性参数整定的方法,重点探讨了比例(P)、积分(Ki)和微分(Kd)系数的非线性算法,特别是利用sech()函数进行优化。通过坐标缩放处理,解决了偏差大时计算问题,并提供了比例项的SCL代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    根据一般PID的响应曲线,我们可以设计更加符合响应曲线的P、I、D参数,这里的非线性是指参数整定方法采用非线性,并不是PID本身的算法,非线性的PID算法后面会给大家讲。包括韩京清老师提出的ADRC都属于非线性PID范畴。本文给出主要的公式算法实现,Kp项完整scl代码已经给出,Ki和Kd项按照公式计算即可这里不再列出。具体PID里面系数传递自行设计测试就好。 

    1、比例(P),积分系数(Ki)、微分系数(Kd)对应的非线性算法如下:

 关于双曲三角函数,不太清楚的可以简单的翻下书本,这里不做过多讲解 ,简单的看下它的函数   图像,为什么我们选定这个函数做为核函数。

   微分项上图的由于笔误,大家可以看下面的这张图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

RXXW_Dor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值