【SVL官方说明文档】

SVL模拟器提供了一个全面的平台,用于在各种环境中测试和验证自动驾驶系统。从安装指南到运行分布式模拟,包括Apollo和ROS2的集成,以及地图创建和车辆定制,该模拟器支持模块化测试和本地自动化流程。用户可以访问丰富的资源,如商店、库和教程,以实现高级的机器人和自动驾驶仿真。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Home 回家

Explore our guides and examples for using SVL Simulator (formerly “LGSVL Simulator”).

探索我们使用 SVL 模拟器(以前的“ LGSVL 模拟器”)的指南和示例。

Get started here.

从这里开始。

Visit our website here: https://www.svlsimulator.com

点击这里访问我们的网站: https://www.svlsimulator.com

Table of Contents 目录

Release Notes 发行说明

Release features 发布功能

Release notes 发布说明

Contents of this release 这份文件的内容

Limitations and license notice 限制和许可通知

Previous releases 上一版本

Installation Guide 安装指南

System requirements 系统需求

Installation procedure 安装程序

Building from source 从源头建造

Debugging Unity scripts 调试 Unity 脚本

Running Linux GPU applications on Windows在 ###Windows 上运行 Linux GPU 应用程序

Getting Started 开始

Introduction 简介

Conventions 聚会

Run a simulation 模拟一下

Tutorials 教程

Modular testing with the Apollo AD stack使用 Apollo AD 栈进行模块化测试

Deep learning lane following model 深度学习车道跟随模型

Creating a simple ROS2-based AD stack创建一个简单的基于 ROS2的广告堆栈

Viewing and subscribing to ground truth obstacles观察和认同地面真理障碍

Running a basic Robotics Simulation with ROS 2用 ROS2运行一个基本的机器人仿真

Robot simulation with ROS 2 Navigation Stack基于 ROS2导航栈的机器人仿真

Mapping a simulation environment in ROS 2在 ROS2中映射仿真环境

Local Automation (CI/CD) Tutorial 本地自动化(CI/CD)教程

Running SVL Simulator on AWS 在 AWS 上运行 SVL 模拟器

User Interface 用户界面

Web User Interface 网络用户界面

Store 商店

Library 图书馆

Clusters 集群

Simulations 模拟

Test Results 测试结果

Simulation User Interface 模拟用户界面

Simulator main menu 模拟器主菜单

Simulation menu 模拟菜单

Sensor visualizers 传感器可视化

Bridge connection UI 桥连接用户界面

Configuration file and command line parameters配置文件和命令行参数

Keyboard shortcuts 键盘快捷键

System Under Test 正在测试的系统

Introduction 简介

Messages 信息

Simulator messages 模拟信息

The lgsvl_msgs package Lgsvl _ msgs 包

Sensor message publishing 传感器信息发布

ROS (Autoware.AI)

ROS 2

Autoware.Auto 自动档,自动档

Setting up ROS 2 bridge 建立 ROS 2桥

Apollo 阿波罗

Latest Apollo 最新的阿波罗

Apollo 5.0 阿波罗5.0

Running Simulations 运行模拟

Runtime templates 运行时模板

Running simulator 运行模拟器

Offline mode 脱机模式

Developer mode 开发模式

Local Automation (CI/CD) 本地自动化(CI/CD)

Creating Scenarios 创建场景

Random traffic 随机流量

Visual scenario editor 可视化方案编辑器

Python API

Python API

Python API guide Python API 指南

Python API quickstart guide Python API 快速启动指南

Dreamview API

Simulation Content 模拟内容

Sharing assets 分享资产

Building content 构建内容

Maps 地图

Creating a new map 创建一个新的地图

Map annotation 地图注释

Road network generation 道路网络生成

Adding destinations to a map 向地图添加目的地

Point cloud import 点云导入

Point cloud rendering 点云渲染

Point cloud export 点云输出

Lane-line detector 车道线检测器

Lighting for indoor enviroments 室内环境照明

Vehicles 车辆

Creating a new ego vehicle 创造一个新的自我载体

Vehicle dynamics 车辆动力学

Sensors 传感器

List of sensors 传感器列表

Lane-line sensor 车道线传感器

Differential Drive Control Sensor 差速器控制传感器

SDF 自卫队

Importing SDF world files 导入 SDF 世界文件

Plugins 插件

Sensor plugins 传感器插件

Bridge plugins 桥接插件

Controllable plugins 可控插件

NPC plugins NPC 插件

Pedestrian plugins 行人插件

Developer Debug mode 开发人员调试模式

Digital Twin 数码双胞胎

Digital Twin Lite example map 数字双 Lite 示例地图

Distributed Simulation 分布式仿真

Introduction 简介

Running distributed simulation 运行分布式模拟

Third Party Integration 第三方整合

OpenAI Gym OpenAI 健身房

Support 支持

Troubleshooting 故障排除

Unity help 团结帮助

Frequently asked questions 常见问题

Contributing 贡献

### Apollo 7.0 Simulation Virtual Lab (SVL) 功能介绍 Simulation Virtual Lab (SVL) 是 Apollo 自动驾驶平台中的一个重要组成部分,主要用于模拟自动驾驶车辆的行为以及测试其性能。以下是关于 Apollo 7.0 中 SVL 的详细介绍: #### 1. **SVL 的核心功能** SVL 提供了一个高度仿真的虚拟环境,用于开发和验证自动驾驶算法。它支持多种场景的创建与仿真,包括但不限于城市道路、高速公路和复杂交通情况下的交互行为。通过 SVL,开发者可以快速评估感知、规划和控制模块的表现。 - **高精度地图集成** SVL 支持加载 Apollo 平台提供的高精度地图数据,从而实现更真实的地理环境还原[^1]。 - **多传感器仿真** 用户可以在 SVL 中配置激光雷达、摄像头和其他传感器模型,以模拟真实世界的数据采集过程[^2]。 - **动态目标物管理** SVL 能够处理移动物体(如行人、自行车和汽车)的行为预测,并允许用户自定义这些对象的动作逻辑[^3]。 #### 2. **SVL 的运行方式** 为了启动并使用 SVL,在 Apollo Docker 容器环境中需执行特定脚本完成构建工作流。具体操作如下所示: ```bash ./apollo.sh clean ./apollo.sh build_opt_gpu ``` 上述命令清理旧版本文件后再重新编译项目代码,确保最新更改生效的同时优化 GPU 性能表现。 #### 3. **常见问题解决方法** 当遇到某些特殊情况比如外部条件改变或者目标短暂消失等问题时,可以通过调整参数设置来改善体验效果。例如增加跟踪窗口大小可以帮助减少误判率;另外合理安排计算资源分配比例也有助于提升整体效率水平。 --- ### 示例代码片段展示如何初始化一个简单的仿真会话 下面提供了一段 Python 脚本来说明怎样利用 API 接口开启一个新的模拟实例: ```python from svl_simulator import Simulator def start_simulation(): sim = Simulator() # 加载预设的地图名称为 'borregasave' scene = sim.load('borregasave') # 设置 ego vehicle 初始位置 ego_vehicle = scene.get_ego_vehicle() ego_vehicle.set_pose(10, 5, 0) if __name__ == "__main__": start_simulation() ``` 此例子展示了基本流程——从导入必要的库到指定使用的场地直至最后设定主角车的位置信息均有所涉及。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值