一、项目背景与研究价值
在增材制造(Additive Manufacturing,AM)领域,3D打印技术的广泛应用带来了生产效率的提升和成本的降低。然而,3D打印过程中常常会出现各种结构异常,如层移(Layer Shifting)、翘曲(Warping)、拉丝(Stringing)、裂纹(Cracking)等,这些缺陷不仅影响产品质量,还可能导致材料浪费和设备损坏。
传统的质量控制方法依赖于人工检查或后处理检测,效率低下且无法实现实时监控。随着深度学习和计算机视觉技术的发展,基于视觉的实时质量监控系统成为可能。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个3D打印质量监控系统,实现对打印过程中结构异常的实时检测和报警。
二、数据集准备
为了训练和评估3D打印质量监控模型,需要准备包含各种打印缺陷的图像数据集,并标注其位置。以下是一些公开可用的数据集: