PrintDefectMonitor:基于YOLOv10的3D打印质量监控系统

一、项目背景与研究价值

在增材制造(Additive Manufacturing,AM)领域,3D打印技术的广泛应用带来了生产效率的提升和成本的降低。然而,3D打印过程中常常会出现各种结构异常,如层移(Layer Shifting)、翘曲(Warping)、拉丝(Stringing)、裂纹(Cracking)等,这些缺陷不仅影响产品质量,还可能导致材料浪费和设备损坏。

传统的质量控制方法依赖于人工检查或后处理检测,效率低下且无法实现实时监控。随着深度学习和计算机视觉技术的发展,基于视觉的实时质量监控系统成为可能。本文将介绍如何使用YOLOv10模型结合PyQt5界面,构建一个3D打印质量监控系统,实现对打印过程中结构异常的实时检测和报警。


二、数据集准备

为了训练和评估3D打印质量监控模型,需要准备包含各种打印缺陷的图像数据集,并标注其位置。以下是一些公开可用的数据集:

2.1 推荐数据集来源

1)3D Printing Defect Detection Dataset - Roboflow</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值