VirtualTryOnSizeMatcher:基于YOLOv8的人体尺寸检测与服装匹配系统

一、项目背景与动机

随着电商的发展,消费者在线购物体验的重要性日益提升。尤其在服装行业,因无法试穿常造成尺码不合的问题,导致高退货率和用户满意度下降。为了解决这一问题,虚拟试衣间(Virtual Try-On)技术应运而生。本项目基于YOLOv8和人体关键点检测技术,实现一个能够自动检测用户身体尺寸,并智能匹配合适服装尺码的系统。

本项目命名为:VirtualTryOnSizeMatcher

二、技术路线概览

项目主要采用如下技术:

  • YOLOv8:用于人体姿态估计和尺寸识别(关键点检测)。
  • OpenCV:用于图像处理与视频流接入。
  • PyQt5 / Tkinter:构建用户交互界面。
  • Pandas + JSON数据管理:维护服装尺码对照表。
  • 参考数据集:COCO + Body Measurement Dataset(后面会详细介绍)

三、系统功能架构

diff
复制编辑
+---------------------+
|   用户上传/打开图像   |
+---------------------+
          ↓
+---------------------+
|     YOLOv8检测人体姿态 |
|  提取关键点计算身体尺寸 |
+---------------------+
          ↓
+---------------------+
|   匹配推荐服装尺码     |
| (结合尺码表计算推荐结果)|
+---------------------+
          ↓
+---------------------+
|    展示结果与UI交互    |
+---------------------+

四、参考数据集推荐

1. COCO Keypoints Dataset

2. Body Measurement Dataset

3. Fashion Dataset(可选)


五、YOLOv8训练与关键点检测实现

1. 安装YOLOv8及依赖

bash
复制编辑
pip install ultralytics
pip install opencv-python pandas pyqt5

2. 关键点模型训练(可使用官方模型)

bash
复制编辑
from ultralytics import YOLO

# 使用预训练关键点模型
model = YOLO('yolov8l-pose.pt')  # 也可自训练关键点数据集

3. 人体关键点检测与尺寸计算函数

python
复制编辑
import cv2
import numpy as np
from ultralytics import YOLO

model = YOLO('yolov8l-pose.pt')

def get_body_measurements(image_path):
    results = model(image_path)
    keypoints = results[0].keypoints.xy[0].cpu().numpy()

    # 提取关键关键点坐标
    shoulder_left = keypoints[5]
    shoulder_right = keypoints[6]
    hip_left = keypoints[11]
    hip_right = keypoints[12]

    # 计算肩宽与臀宽(像素单位)
    shoulder_width = np.linalg.norm(shoulder_right - shoulder_left)
    hip_width = np.linalg.norm(hip_right - hip_left)

    return {
        "shoulder_width": shoulder_width,
        "hip_width": hip_width,
        "keypoints": keypoints
    }

六、尺码匹配算法

1. 示例尺码表(单位:像素或厘米)

python
复制编辑
size_chart = {
    'S': {'shoulder': 35, 'hip': 85},
    'M': {'shoulder': 40, 'hip': 95},
    'L': {'shoulder': 45, 'hip': 105},
    'XL': {'shoulder': 50, 'hip': 115}
}

2. 匹配推荐逻辑

python
复制编辑
def recommend_size(measurements):
    shoulder = measurements['shoulder_width']
    hip = measurements['hip_width']
    best_match = None
    min_diff = float('inf')

    for size, data in size_chart.items():
        diff = abs(shoulder - data['shoulder']) + abs(hip - data['hip'])
        if diff < min_diff:
            min_diff = diff
            best_match = size

    return best_match

七、完整UI界面代码(PyQt5)

python
复制编辑
import sys
from PyQt5.QtWidgets import QApplication, QLabel, QPushButton, QFileDialog, QWidget, QVBoxLayout
from PyQt5.QtGui import QPixmap

class VirtualTryOnApp(QWidget):
    def __init__(self):
        super().__init__()
        self.setWindowTitle("Virtual Try-On Size Matcher")
        self.resize(500, 500)

        self.label = QLabel("请上传您的照片")
        self.label.setStyleSheet("font-size: 16px;")
        self.image_label = QLabel()
        self.result_label = QLabel("推荐尺码:")

        self.upload_btn = QPushButton("上传图片")
        self.upload_btn.clicked.connect(self.upload_image)

        layout = QVBoxLayout()
        layout.addWidget(self.label)
        layout.addWidget(self.upload_btn)
        layout.addWidget(self.image_label)
        layout.addWidget(self.result_label)
        self.setLayout(layout)

    def upload_image(self):
        file_path, _ = QFileDialog.getOpenFileName()
        if file_path:
            pixmap = QPixmap(file_path)
            self.image_label.setPixmap(pixmap.scaled(400, 400))

            measurements = get_body_measurements(file_path)
            recommended = recommend_size(measurements)
            self.result_label.setText(f"推荐尺码:{recommended}")

if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = VirtualTryOnApp()
    window.show()
    sys.exit(app.exec_())

八、完整运行流程

  1. 准备训练好的 YOLOv8 姿态估计模型。
  2. 准备图片:用户上传或摄像头实时获取人体图像。
  3. 调用 get_body_measurements() 函数获取肩宽、臀宽。
  4. 使用 recommend_size() 函数推荐最匹配尺码。
  5. UI界面展示图像和推荐结果。

九、项目目录结构建议

bash
复制编辑
VirtualTryOnSizeMatcher/
│
├── yolov8_keypoint.py        # 关键点检测与尺寸测量
├── size_recommender.py       # 尺码匹配逻辑
├── ui_app.py                 # UI界面
├── assets/                   # 示例图片/图标
├── data/                     # 数据集/尺码表等
└── README.md

十、进阶优化建议

  • 支持实时摄像头试穿(cv2.VideoCapture
  • 增加衣服图片叠加效果(2D服装虚拟穿搭)
  • 基于GAN的真实换衣(VirtualTryOn like VITON)
  • 使用深度相机获取真实尺寸(如Kinect)

十一、总结

本博客详细讲解了如何使用 YOLOv8 实现一个虚拟试衣间系统,涵盖了:

  • 人体关键点检测与尺寸计算
  • 服装尺码推荐算法
  • PyQt5 图形界面展示结果
  • 参考数据集与完整运行代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值