一、项目背景与动机
随着电商的发展,消费者在线购物体验的重要性日益提升。尤其在服装行业,因无法试穿常造成尺码不合的问题,导致高退货率和用户满意度下降。为了解决这一问题,虚拟试衣间(Virtual Try-On)技术应运而生。本项目基于YOLOv8和人体关键点检测技术,实现一个能够自动检测用户身体尺寸,并智能匹配合适服装尺码的系统。
本项目命名为:VirtualTryOnSizeMatcher
。
二、技术路线概览
项目主要采用如下技术:
- YOLOv8:用于人体姿态估计和尺寸识别(关键点检测)。
- OpenCV:用于图像处理与视频流接入。
- PyQt5 / Tkinter:构建用户交互界面。
- Pandas + JSON数据管理:维护服装尺码对照表。
- 参考数据集:COCO + Body Measurement Dataset(后面会详细介绍)
三、系统功能架构
diff
复制编辑
+---------------------+
| 用户上传/打开图像 |
+---------------------+
↓
+---------------------+
| YOLOv8检测人体姿态 |
| 提取关键点计算身体尺寸 |
+---------------------+
↓
+---------------------+
| 匹配推荐服装尺码 |
| (结合尺码表计算推荐结果)|
+---------------------+
↓
+---------------------+
| 展示结果与UI交互 |
+---------------------+
四、参考数据集推荐
1. COCO Keypoints Dataset
- 地址:https://cocodataset.org/#keypoints-2020
- 内容:包含大量带关键点注释的人体图像,用于训练姿态估计模型。
- 类型:公开免费。
2. Body Measurement Dataset
- 地址:https://github.com/sksq96/BodyMeasurementDataset
- 内容:提供带有人体尺寸(如肩宽、胸围、腰围、腿长等)标注的图像数据。
- 类型:MIT License,适合研究用途。
3. Fashion Dataset(可选)
- DeepFashion2: https://github.com/switchablenorms/DeepFashion2
- 包含人体穿衣样本和关键点,有利于增强数据泛化能力。
五、YOLOv8训练与关键点检测实现
1. 安装YOLOv8及依赖
bash
复制编辑
pip install ultralytics
pip install opencv-python pandas pyqt5
2. 关键点模型训练(可使用官方模型)
bash
复制编辑
from ultralytics import YOLO
# 使用预训练关键点模型
model = YOLO('yolov8l-pose.pt') # 也可自训练关键点数据集
3. 人体关键点检测与尺寸计算函数
python
复制编辑
import cv2
import numpy as np
from ultralytics import YOLO
model = YOLO('yolov8l-pose.pt')
def get_body_measurements(image_path):
results = model(image_path)
keypoints = results[0].keypoints.xy[0].cpu().numpy()
# 提取关键关键点坐标
shoulder_left = keypoints[5]
shoulder_right = keypoints[6]
hip_left = keypoints[11]
hip_right = keypoints[12]
# 计算肩宽与臀宽(像素单位)
shoulder_width = np.linalg.norm(shoulder_right - shoulder_left)
hip_width = np.linalg.norm(hip_right - hip_left)
return {
"shoulder_width": shoulder_width,
"hip_width": hip_width,
"keypoints": keypoints
}
六、尺码匹配算法
1. 示例尺码表(单位:像素或厘米)
python
复制编辑
size_chart = {
'S': {'shoulder': 35, 'hip': 85},
'M': {'shoulder': 40, 'hip': 95},
'L': {'shoulder': 45, 'hip': 105},
'XL': {'shoulder': 50, 'hip': 115}
}
2. 匹配推荐逻辑
python
复制编辑
def recommend_size(measurements):
shoulder = measurements['shoulder_width']
hip = measurements['hip_width']
best_match = None
min_diff = float('inf')
for size, data in size_chart.items():
diff = abs(shoulder - data['shoulder']) + abs(hip - data['hip'])
if diff < min_diff:
min_diff = diff
best_match = size
return best_match
七、完整UI界面代码(PyQt5)
python
复制编辑
import sys
from PyQt5.QtWidgets import QApplication, QLabel, QPushButton, QFileDialog, QWidget, QVBoxLayout
from PyQt5.QtGui import QPixmap
class VirtualTryOnApp(QWidget):
def __init__(self):
super().__init__()
self.setWindowTitle("Virtual Try-On Size Matcher")
self.resize(500, 500)
self.label = QLabel("请上传您的照片")
self.label.setStyleSheet("font-size: 16px;")
self.image_label = QLabel()
self.result_label = QLabel("推荐尺码:")
self.upload_btn = QPushButton("上传图片")
self.upload_btn.clicked.connect(self.upload_image)
layout = QVBoxLayout()
layout.addWidget(self.label)
layout.addWidget(self.upload_btn)
layout.addWidget(self.image_label)
layout.addWidget(self.result_label)
self.setLayout(layout)
def upload_image(self):
file_path, _ = QFileDialog.getOpenFileName()
if file_path:
pixmap = QPixmap(file_path)
self.image_label.setPixmap(pixmap.scaled(400, 400))
measurements = get_body_measurements(file_path)
recommended = recommend_size(measurements)
self.result_label.setText(f"推荐尺码:{recommended}")
if __name__ == "__main__":
app = QApplication(sys.argv)
window = VirtualTryOnApp()
window.show()
sys.exit(app.exec_())
八、完整运行流程
- 准备训练好的 YOLOv8 姿态估计模型。
- 准备图片:用户上传或摄像头实时获取人体图像。
- 调用
get_body_measurements()
函数获取肩宽、臀宽。 - 使用
recommend_size()
函数推荐最匹配尺码。 - UI界面展示图像和推荐结果。
九、项目目录结构建议
bash
复制编辑
VirtualTryOnSizeMatcher/
│
├── yolov8_keypoint.py # 关键点检测与尺寸测量
├── size_recommender.py # 尺码匹配逻辑
├── ui_app.py # UI界面
├── assets/ # 示例图片/图标
├── data/ # 数据集/尺码表等
└── README.md
十、进阶优化建议
- 支持实时摄像头试穿(
cv2.VideoCapture
) - 增加衣服图片叠加效果(2D服装虚拟穿搭)
- 基于GAN的真实换衣(VirtualTryOn like VITON)
- 使用深度相机获取真实尺寸(如Kinect)
十一、总结
本博客详细讲解了如何使用 YOLOv8 实现一个虚拟试衣间系统,涵盖了:
- 人体关键点检测与尺寸计算
- 服装尺码推荐算法
- PyQt5 图形界面展示结果
- 参考数据集与完整运行代码