操作臂动力学的拉格朗日方程

目录

一、拉格朗日函数

1.1 、操作臂动能

1.2 、操作臂势能

二、操作臂的运动方程                                                        

2.1、操作臂运动方程1

2.2、操作臂运动方程2

三、参考文献


        拉格朗日动力学是一种基于能量的方法[1],通过计算操作臂系统动能和势能的差值得到动力学方程,也称为拉格朗日函数。其中,动能和势能函数计算结果都是标量,也称为标量函数。

一、拉格朗日函数

操作臂拉格朗日函数可表示为     

 \pounds (\Theta ,\dot{\Theta })=k (\Theta ,\dot{\Theta })+u(\Theta )           (1)

 1.1 、操作臂动能                                        ​​​

1.第i个连杆的动能 k_i表示为

k_i=\frac{1}{2}m{_{i}} v{_{C{_{i}}}^{T}} v{_{C{_{i}}}}+\frac{1}{2}{^{i}\textrm{w}}{_{i}^{TC_{i}}} I{_{i}} {^{i}\textrm{w}}{_{i}}        (2)

(1)、动能由连杆质心线速度动能和连杆角速度动能组成。其中线速度动能表示移动动能,角速度动能表示转动动能[2]。
(2)、{^{i}\textrm{w}}{_{i}}中左上标 i表示在第 i个连杆坐标系中的角速度,{w}{_{i}} 表示第 i个连杆的角速度。
(3)、线速度动能表达式由于m{_{i}}是标量,v{_{C{_{i}}}}是3×1的矢量,计算结果为标量;角速度由于{^{i}\textrm{w}}{_{i}}是3×1的矢量,I{_{i}}是3×3的矢量,计算结果也是标量。

备注:标量和矢量的区别
1.标量(Scalar) 

(1)、定义: 标量是只有大小而没有方向的物理量。标量在任意参考系中都不改变,是绝对的。

(2)、例子: 质量、温度、时间、能量、功、速度的大小(即标量速度)等。

(3)、数学表示: 标量通常表示为普通的变量符号,如 m 表示质量,T 表示温度等。


2.矢量(Vector)

(1)、定义: 矢量(也称为向量)是具有大小和方向的物理量。矢量在不同的参考系下可能会发生改变(方向和大小都可能变化),但它的基本性质(即在给定参考系中的表示)依旧存在。

(2)、例子: 位移、速度、加速度、力、角速度、动量等。

(3)、数学表示: 矢量通常用粗体字母(如 v)或带有箭头的符号(如\vec{v})表示。在数学表达式中,矢量通常以列向量的形式表示,例如

2.整个操作臂的动能是各个连杆动能之和

  k= \sum_{i=1}^{n} k_{i}                        (3)

 3.v{_{C{_{i}}}}{^{i}\textrm{w}}{_{i}}\Theta\dot{\Theta }和函数                                                     

备注:
(1).v_i 和 w_i\dot{\Theta }的函数
        v_i=w_i*r_iw_i=\frac{\triangle \Theta }{\triangle t },对于连续变化的角度w_i=\dot{\Theta _{i}}  ,v_i 和 w_i\dot{\Theta }的函数;
(2).v_i 和 w_i\Theta的函数

所以,操作臂的动能k(\Theta ,\dot{\Theta })可以描述为关节位置和速度的标量函数。

 k(\Theta ,\dot{\Theta })=\frac{1}{2}\dot{\Theta }^{T}M(\Theta )\dot{\Theta }              (4)

 M(\Theta )为n×n的操作臂质量矩阵,同时也是正定矩阵。所以,动能永远是正的。而且式((4)是二次型,方程全部是\dot{\Theta _{i}}的二次项组成的。                                             

正定矩阵(Positive Definite Matrix)是一种特殊的对称矩阵,满足以下条件:

(1).对称性:矩阵的转置等于其本身。即对于任意的 i 和 j,都有 A[i][j] = A[j][i]。

(2).正定性:对于任何非零向量 x,都有 x^T * A *x > 0。其中 x^T 表示向量 x 的转置, 表示矩阵乘法。

1.2 、操作臂势能

  1.第i个连杆的势能 u_i表示为[1]  

  u_i=-m_i{^{0}\textrm{g}}^T {^{0}\textrm{P}}_C{_{_i}}+u_{ref{_i}}                       (5)

                                               

 备注:解释为什么在重力势能前添加负号(个人理解)
        表示以0为参考点的坐标系,选择以z向上方向为正方向时,C_i点在0点的下方,此时C_i在z方向坐标为负。但是,为了保证物体位置越高,势能越大,所以在前方添加符号。           

2.整个操作臂的势能是各个连杆势能之和

 u= \sum_{i=1}^{n} u_{i}                                   (6)
                                                        

 3.{^{0}\textrm{P}}_C{_{_i}}\Theta的函数 

备注:
{^{0}\textrm{P}}_C{_{_i}}是表示连杆C_i相对于参考点0的竖直方向位置,需要通过连杆之间的角度计算出。

同时操作臂的势能u(\Theta )可以描述为关节位置的标量函数。

二、操作臂的运动方程                                                        

2.1、操作臂运动方程1

  \frac{d}{dt}\frac{\partial{\pounds}}{\partial\dot{\Theta }}-\frac{\partial{ \pounds} }{\partial{\Theta } }=\tau                                (7)

备注1:F与动量之间的关系
力确实等于动量的变化率。这是牛顿第二定律的核心内容,该定律可以表述为:

                                                                        \vec{F}=\frac{d{\vec{p}}}{dt}

其中\vec{F} 是作用在物体上的力,\vec{p}是物体的动量,t 是时间。动量 \vec{p}​ 定义为质量 m 与速度 \vec{v} 的乘积:

                ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​       \vec{p}=m\vec{v}

因此,牛顿的第二定律也可以写成:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \vec{F}=m\frac{d{\vec{v}}}{dt}

这里 \frac{d{\vec{v}}}{dt}是加速度 \vec{a},所以常见的形式是:

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        \vec{F}=m\vec{a}

这表示力等于质量与加速度的乘积,也等同于动量的时间变化率。这个公式是经典力学中描述力和运动关系的基础。

备注2:
由于动能T是关于\dot{\Theta _{i}}的二次型,

        ​​​​​​​        ​​​​​​​        ​​​​​​​                        ​​​​​​​        T=\frac{1}{2}m\dot{\Theta }^2

其中I是系统的转动惯量。

拉格朗日函数 L是动能与势能的差:
        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        L=T-U=\frac{1}{2}m\dot{\Theta }^2-U(\Theta )

通过对\dot{\Theta _{i}}求偏导,可以求出动量                            
        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        p=\frac{\partial{\pounds}}{\partial\dot{\Theta }}=\frac{\partial{\pounds}}{\partial\dot{\Theta }}(\frac{1}{2}m\dot{\Theta }^2-U(\Theta ))=m\dot{\Theta }

备注3:(个人理解)
拉格朗日函数 L\dot{\Theta }求偏导,是求根据"动量"产生的力,这个力可以根据外部力而发生改变。

拉格朗日函数 L\Theta求偏导,是求内部势能产生的力,这个力不受到外部力的影响。

2.2、操作臂运动方程2

   \frac{d}{dt}\frac{\partial{k}}{\partial\dot{\Theta }}-\frac{\partial{ k} }{\partial{\Theta } }+\frac{\partial{u} }{\partial{\Theta } }=\tau                     (8)

三、参考文献

 [1].机器人学导论(第四版)

 [2].《机器人动力学与控制》第九章——动力学 9.2 动能与势能的一般表达_惯量积为0-CSDN博客

  • 16
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值