目录
拉格朗日动力学是一种基于能量的方法[1],通过计算操作臂系统动能和势能的差值得到动力学方程,也称为拉格朗日函数。其中,动能和势能函数计算结果都是标量,也称为标量函数。
动力学方程的本质是求出力F作用下的运动方程,根据这个方程即可知道操作臂在力的作用下如何进行运动。
一、拉格朗日函数
操作臂拉格朗日函数可表示为
(1)
1.1 、操作臂动能
1.第i个连杆的动能 表示为
(2)
(1)、动能由连杆质心线速度动能和连杆角速度动能组成。其中线速度动能表示移动动能,角速度动能表示转动动能[2]。
(2)、中左上标 i表示在第 i个连杆坐标系中的角速度,
表示第 i个连杆的角速度。
(3)、线速度动能表达式由于是标量,
是3×1的矢量,计算结果为标量;角速度由于
是3×1的矢量,
是3×3的矢量,计算结果也是标量。
备注:标量和矢量的区别
1.标量(Scalar)(1)、定义: 标量是只有大小而没有方向的物理量。标量在任意参考系中都不改变,是绝对的。
(2)、例子: 质量、温度、时间、能量、功、速度的大小(即标量速度)等。
(3)、数学表示: 标量通常表示为普通的变量符号,如 m 表示质量,T 表示温度等。
2.矢量(Vector)(1)、定义: 矢量(也称为向量)是具有大小和方向的物理量。矢量在不同的参考系下可能会发生改变(方向和大小都可能变化),但它的基本性质(即在给定参考系中的表示)依旧存在。
(2)、例子: 位移、速度、加速度、力、角速度、动量等。
(3)、数学表示: 矢量通常用粗体字母(如
)或带有箭头的符号(如
)表示。在数学表达式中,矢量通常以列向量的形式表示,例如
2.整个操作臂的动能是各个连杆动能之和
(3)
3.和
是
和
和函数
备注:
(1).和
是
的函数
、
,对于连续变化的角度
,
和
是
的函数;
(2).和
是
的函数
操作臂的动能可以描述为关节位置和速度的标量函数。因为
和
主要是
的函数,然而,当质心位置
与角度
有关系时,
才是
和
的函数,所以函数形式如下:
(4)
为n×n的操作臂质量矩阵,同时也是正定矩阵。所以,动能永远是正的。而且式((4)是二次型,方程全部是
的二次项组成的。
正定矩阵(Positive Definite Matrix)是一种特殊的对称矩阵,满足以下条件:
(1).对称性:矩阵的转置等于其本身。即对于任意的 i 和 j,都有 A[i][j] = A[j][i]。
(2).正定性:对于任何非零向量 x,都有 x^T * A *x > 0。其中 x^T 表示向量 x 的转置, 表示矩阵乘法。
1.2 、操作臂势能
1.第i个连杆的势能 表示为[1]
(5)
备注:解释为什么在重力势能前添加负号(个人理解)
表示以0为参考点的坐标系,选择以z向上方向为正方向时,点在0点的下方,此时
在z方向坐标为负。但是,为了保证物体位置越高,势能越大,所以在前方添加符号。
2.整个操作臂的势能是各个连杆势能之和
(6)
3.是
的函数
备注:
是表示连杆
相对于参考点0的竖直方向位置,需要通过连杆之间的角度计算出。
同时操作臂的势能可以描述为关节位置的标量函数。
二、操作臂的运动方程
2.1、操作臂运动方程1
(7)
1.1、线动能和角动能与动量之间的关系
由于动能T是关于的二次型,
其中
是系统的转动惯量。
拉格朗日函数
是动能与势能的差:
通过对
求偏导,可以求出线动量和角动量
1.2、线动量与F(力)之间的关系
线性动量的变化率等于施加到物体上的合力[5]P146。
力确实等于动量的变化率。这是牛顿第二定律的核心内容,该定律可以表述为:
其中
是作用在物体上的力,
是物体的动量,t 是时间。动量
定义为质量 m 与速度
的乘积:
因此,牛顿的第二定律也可以写成:
这里
是加速度
,所以常见的形式是:
这表示力等于质量与加速度的乘积,也等同于动量的时间变化率。这个公式是经典力学中描述力和运动关系的基础。
1.3、角动量与M(力矩)之间的关系[4]
角动量的变化率等于施加到物体上的合力矩[5]P146。
角速度与力矩之间的关系:
2.1、势能与F之间的关系
(1)、在保守力场中(如重力场、弹性力场),力和势能之间存在如下关系:
其中 ,F是力,U是势能,
表示势能的梯度。
对于一个物体在某个位置的势能U,力 F的大小和方向由势能在空间中的变化速率决定。力的方向是势能减少最快的方向,力的大小则是势能在该方向上的变化率。
(2)、在角度下的偏导数
在拉格朗日动力学中,当分析系统中与角度相关的力(如转矩或扭矩)时:
其中:负号表示力的方向与势能变化的方向相反,也就是说,力总是作用在试图减小势能的方向上。
3.1、(个人理解)
拉格朗日函数对
求偏导,是求根据"动量"产生的力,这个力可以根据外部力而发生改变。
拉格朗日函数
对
求偏导,是求内部"势能"产生的力,这个力不受到外部力的影响。
2.2、操作臂运动方程2
(8)
三、参考文献
[1].机器人学导论(第四版)
[2].《机器人动力学与控制》第九章——动力学 9.2 动能与势能的一般表达_惯量积为0-CSDN博客
[3].【深入浅出】机器人动力学-拉格朗日方程实例_拉格朗日动力学方程-CSDN博客
[4].物理知识:转动惯量 - 知乎 (zhihu.com)
[5].机器人建模和控制.Mark W.Spong、Seth Hutchinson、M.Vidyasagar


5359

被折叠的 条评论
为什么被折叠?



