操作臂动力学的拉格朗日方程

目录

一、拉格朗日函数

1.1 、操作臂动能

1.2 、操作臂势能

二、操作臂的运动方程                                                        

2.1、操作臂运动方程1

2.2、操作臂运动方程2

三、参考文献


        拉格朗日动力学是一种基于能量的方法[1],通过计算操作臂系统动能和势能的差值得到动力学方程,也称为拉格朗日函数。其中,动能和势能函数计算结果都是标量,也称为标量函数。
        动力学方程的本质是求出力F作用下的运动方程,根据这个方程即可知道操作臂在力的作用下如何进行运动。

一、拉格朗日函数

操作臂拉格朗日函数可表示为     

 \pounds (\Theta ,\dot{\Theta })=k (\Theta ,\dot{\Theta })+u(\Theta )           (1)

 1.1 、操作臂动能                                        ​​​

1.第i个连杆的动能 k_i表示为

k_i=\frac{1}{2}m{_{i}} v{_{C{_{i}}}^{T}} v{_{C{_{i}}}}+\frac{1}{2}{^{i}\textrm{w}}{_{i}^{TC_{i}}} I{_{i}} {^{i}\textrm{w}}{_{i}}        (2)

(1)、动能由连杆质心线速度动能和连杆角速度动能组成。其中线速度动能表示移动动能,角速度动能表示转动动能[2]。
(2)、{^{i}\textrm{w}}{_{i}}中左上标 i表示在第 i个连杆坐标系中的角速度,{w}{_{i}} 表示第 i个连杆的角速度。
(3)、线速度动能表达式由于m{_{i}}是标量,v{_{C{_{i}}}}是3×1的矢量,计算结果为标量;角速度由于{^{i}\textrm{w}}{_{i}}是3×1的矢量,I{_{i}}是3×3的矢量,计算结果也是标量。

备注:标量和矢量的区别
1.标量(Scalar) 

(1)、定义: 标量是只有大小而没有方向的物理量。标量在任意参考系中都不改变,是绝对的。

(2)、例子: 质量、温度、时间、能量、功、速度的大小(即标量速度)等。

(3)、数学表示: 标量通常表示为普通的变量符号,如 m 表示质量,T 表示温度等。


2.矢量(Vector)

(1)、定义: 矢量(也称为向量)是具有大小和方向的物理量。矢量在不同的参考系下可能会发生改变(方向和大小都可能变化),但它的基本性质(即在给定参考系中的表示)依旧存在。

(2)、例子: 位移、速度、加速度、力、角速度、动量等。

(3)、数学表示: 矢量通常用粗体字母(如 v)或带有箭头的符号(如\vec{v})表示。在数学表达式中,矢量通常以列向量的形式表示,例如

2.整个操作臂的动能是各个连杆动能之和

  k= \sum_{i=1}^{n} k_{i}                        (3)

 3.v{_{C{_{i}}}}{^{i}\textrm{w}}{_{i}}\Theta\dot{\Theta }和函数                                                     

备注:
(1).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值