大模型虽强,但动辄数十亿参数,训练成本高、推理速度慢这可怎么办?
别担心,在ICLR 2025上阿里联合港中文等机构发表了最新研究成果LLAVA-MoD。
通过两项核心技术突破,让小模型也能**“四两拨千斤”!**
2B参数的小模型性能也能超越7B大模型!
究竟如何做到的?一文揭秘👇
【论文链接】
https://openreview.net/pdf?id=uWtLOy35WD
1
简介
本文提出了轻量化多模态大模型LLaVA-MoD,通过集成稀疏专家混合(MoE)架构来优化小模型的网络结构。
并设计了Dense-to-Sparse蒸馏框架,结合模仿蒸馏和偏好蒸馏的两阶段策略,实现全面的知识迁移。
该方案仅使用0.3%的数据和23%的激活参数,即可使2B的小模型的综合性能超过7B的大模型8.8%,并在幻觉检测任务中超越教师模型。
本文的研究思路与Deepseek-R1相似,均聚焦于Dense与Sparse MoE之间的知识蒸馏架构。
但LLaVA-MoD在此基础上创新性地采用了逆向路径(Dense-to-Sparse),使参数效率提高了3.2倍,训练数据消耗减少了99.7%。
该方法在动态平衡模型效率与表达能力的同时,为智能终端、边缘计算等应用场景提供了高性价比的解决方案,相关代码已开源。
2
引言
MLLM通过将视觉编码器整合入LLM中,在多模态任务上取得了显著成效。
然而,这些大型模型由于其庞大的规模和广泛的训练数据,面临着重大的计算挑战。
例如,LLaVA-NeXT的最大版本利用Qwen-1.5-110B为基础,在128个H800 GPU上训练了18小时。
此外,庞大的参数需求需要高性能硬件支持,导致推理速度缓慢,这使得在现实世界中,特别是在移动设备上进行部署变得更加困难。
因此,探索一种在性能与效率之间实现平衡的小型多模态语言模型(s-MLLM)成为当前的重要研究课题。
s-MLLM的研究主要集中在数据收集和过滤机制上,以确保训练数据的高质量。尽管这些方法有效,但本质上限制了模型的容量。
随着开源MLLM的增多,利用大型MLLM(l-MLLM)作为教师通过蒸馏其丰富的知识到s-MLLM,成为一种可行的研究方向。
然而,在MLLM中实施知识蒸馏是一项全新的尝试。
本文将重点关注两个主要挑战:
- 如何设计一个轻量级架构,以保持强大的学习和表达能力,从而使学生模型能够有效吸收教师模型中的复杂知识。
- 如何高效且全面地将这种知识从教师模型转移到学生模型。
3
技术方案
提出LLaVA-MoD,通过MoE和知识蒸馏(KD)来应对这些挑战,包括两个主要组成部分:
- **s-MLLM架构设计:**如图1所示,设计了一个稀疏的s-MLLM以平衡性能和参数,能够高效学习多样性复杂知识。
- 蒸馏机制:如图2所示,设计了一个渐进式蒸馏框架,用于将知识从l-MLLM传递给稀疏的s-MLLM,包含两个阶段:模仿蒸馏和偏好蒸馏。
3.1 稀疏架构设计
图1. s-MLLM的稀疏化
如图1所示,s-MLLM包含三个主要组件:
- 视觉编码器(Vision Encoder)
- 大语言模型
- 视觉语言适配器(VL Adaptor)
构建s-MLLM的原则是保持Vision Encoder和VL Adaptor不变,同时引入MoE架构,将LLM从稠密型转化为稀疏型。
具体而言,通过稀疏升采样(sparse upcycling)将多个前馈网络(FFN)复制为专家模块。
此外,增加了一个线性层作为路由器,以动态预测专家分配的概率,从而激活合适的专家。
在训练和推理阶段,专家模块能够以动态和稀疏的方式被激活,从而在增加模型容量的同时实现高效的训练和推理过程。
3.2 渐进式蒸馏
图2. LLaVA-MoD的渐进蒸馏
渐进蒸馏包括两个不同的阶段,如图2,即模拟蒸馏和偏好蒸馏。
在模仿蒸馏阶段,学生MLLM模拟教师MLLM的通用和专家知识。
在偏好蒸馏阶段,学生MLLM基于教师MLLM的偏好知识,以进一步优化其输出并减少幻觉。
3.3 模仿蒸馏
由于教师MLLM的知识丰富且复杂,学生MLLM难以一步掌握.
因此本文将知识分解为通用知识和专业知识,分别进行密集到密集蒸馏和密集到稀疏蒸馏,以将这两个方面的知识传递给学生MLLM。
**●密集到密集蒸馏:**在这一阶段,核心目标是学习教师MLLM的通用知识。
通用知识至关重要,因为它为多个领域提供了广泛的基础和共同理解,使学生MLLM能够建立适用于多种场景的基本框架。
这个基础支持学生在进入特定任务之前,拥有更全面和灵活的理解。
具体而言,利用通用的图像-标题对和对话数据来更新LLM和VL Adaptor。
**●密集到稀疏蒸馏:**在这一阶段,通过引入MoE结构,学生MLLM能够针对不同任务和输入选择性地激活最相关的专家,从而在模拟教师的专业知识方面获得显著优势。
具体来说,在训练过程中,利用多任务数据,采用Top-k路由策略选择专家,仅更新这些专家和VL Adaptor。
3.4 偏好蒸馏
在这一阶段,基于教师MLLM中的偏好知识,指导学生MLLM生成不仅准确而且合理的响应,这对于减少幻觉至关重要。
偏好蒸馏受到离散描述偏好优化(DPO)进展的启发,将教师MLLM视为参考模型,发挥关键作用,因为它提供了“好”和“坏”的见解,从而为学生模型建立一个基本参考。
具体而言,训练目标是优化学生模型,使其在区分正面和负面响应时,为正面响应分配比教师模型更高的概率,同时为负面响应分配比教师模型更低的概率。
4
实验结果
采用成熟的"ViT-MLP-LLM"架构来证明LLaVA-MoD的有效性。
在模拟蒸馏中,使用2.4M通用captioning和对话样本来学习教师MLLM的通用知识,
以及1.4M多任务数据,包括VQA、文档、科学和OCR,以学习教师MLLM的专业知识。
在偏好蒸馏中,使用8W偏好样本来学习教师偏好知识。
评估benchmark包括多模态理解、推理和幻觉。
4.1 多模态理解和推理
表1表明,LLaVA-MoD在以理解为导向的基准测试上表现出色。
在2B规模和1B规模的模型中,它分别取得了最先进的平均结果。
表1. 理解知识能力
4.2 幻觉消除
如表2所示,LLaVA-MoD在减轻幻觉方面表现出色,甚至超过了其教师模型。
这可以归因于两个方面:
首先,通过为正响应分配更高的概率,偏好蒸馏鼓励学生模型专注于提供正确和相关的信息。
其次,通过为负响应分配较低的概率,偏好蒸馏discourages错误或不实的信息。
利用教师模型作为参考调整响应概率,这种优化使学生模型更准确、可靠地处理幻觉问题,从而超过了教师模型。
表2: 幻觉消除能力
5
结论
本文提出了LLaVA-MoD,用于通过知识蒸馏从l-MLLM中高效训练s-MLLM。
该框架解决了MLLM蒸馏的两个关键挑战:使用MoE设计增强s-MLLM架构的效率和表达能力平衡,并实现了一种渐进式知识转移策略。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。