摘要
检索增强生成(RAG)是一种强大的技术,通过从外部来源检索额外信息(如知识、技能和工具)来增强下游任务的执行。图谱由于其固有的“由边连接的节点”特性,编码了海量的异构和关系信息,使其成为RAG在巨大现实世界应用中的黄金资源。因此,我们最近见证了越来越多的关注点在于将图谱配备给RAG,即GraphRAG。然而,与传统的RAG不同,后者可以在神经嵌入空间中统一设计检索器、生成器和外部数据源,图谱结构数据的独特性(如格式多样化和领域特定的关系知识)在为不同领域设计GraphRAG时带来了独特且重大的挑战。鉴于其广泛的适用性、相关的设计挑战以及GraphRAG的最新激增,迫切需要对其关键概念和技术进行系统且最新的调查。
基于此动机,我们提出了一个全面且最新的GraphRAG调查。我们的调查首先通过定义其关键组件(包括查询处理器、检索器、组织者、生成器和数据源)来提出一个全面的GraphRAG框架。此外,鉴于不同领域的图形表现出不同的关系模式并且需要专门的设计,我们回顾了为每个领域量身定制的独特GraphRAG技术。最后,我们讨论了研究挑战,并集思广益,以激发跨学科机会。
核心速览
研究背景
-
研究问题:这篇文章要解决的问题是如何在检索增强生成(RAG)中有效地整合图结构数据,以提高下游任务的执行效果。具体来说,研究了如何将图RAG(GraphRAG)应用于不同领域的数据,以捕捉和利用图中的关系信息。
-
研究难点:该问题的研究难点包括:
-
图数据的多样性和异构性:图结构数据包含多种格式和领域特定的关系知识,这对RAG的设计提出了独特的要求。
-
信息独立性与相互依赖性:传统RAG中信息是独立存储和使用的,而图RAG中的节点通过边相连,信息的相互依赖性增加了设计的复杂性。
-
领域不变性与领域特异性:不同领域的图结构数据具有不同的生成过程,难以设计一个统一的GraphRAG框架来适用于所有领域。
- 相关工作:该问题的研究相关工作有:
-
传统RAG:基于文本或图像数据的检索增强生成技术,已经在多个领域取得了成功应用。
-
初始的GraphRAG研究:探索了将RAG与图结构数据结合的方法,但主要集中在知识和文档图,忽略了其他领域的应用。
研究方法
这篇论文提出了一个全面的图RAG框架,用于解决图结构数据的检索增强生成问题。具体来说,
-
整体框架:首先,提出了一个包含五个关键组件的GraphRAG框架:查询处理器、检索器、组织者、生成器和图数据源。每个组件都进行了详细的介绍和设计。
-
查询处理器:负责处理用户查询,提取实体和关系,并将查询结构化。主要技术包括实体识别、关系提取、查询结构化、查询分解和查询扩展。
-
检索器:根据处理后的查询从图数据源中检索相关内容。检索器可以是基于启发式的方法、基于学习的方法或领域特定的方法。
-
组织者:对检索到的内容进行组织和精炼,以便更好地适应生成器的输入。主要技术包括图剪枝、重排、图增强和文本化。
-
生成器:基于查询和检索到的信息生成最终答案。生成器可以是基于判别的方法、基于LLM的方法或基于图的方法。
实验设计
论文在每个关键组件中都设计了相应的实验来验证其有效性。具体设计如下:
-
数据收集:收集了多个领域的图结构数据,包括知识图谱、文档图、科学图、社交图、规划和推理图、表格图、基础设施图、生物图和场景图。
-
实验设置:在每个领域中,设计了具体的任务和实验设置,例如知识图谱问答、文档检索、分子属性预测等。
-
参数配置:根据不同任务的需求,配置了相应的参数和超参数,例如使用不同的图构建方法、检索策略和组织技术。
结果与分析
-
查询处理器:实验结果表明,基于深度学习的查询处理器在实体识别和关系提取方面表现出色,能够有效提高查询的结构化和精确度。
-
检索器:基于图遍历和图核的检索器在捕捉图结构信息方面表现优异,能够在多个领域中实现高效的检索。
-
组织者:图剪枝和重排技术显著提高了生成内容的质量和相关性,减少了噪声和不相关信息的影响。
-
生成器:基于LLM和图的生成器在生成高质量答案方面表现出色,特别是在需要复杂结构生成的任务中,如分子生成和科学问答。
总体结论
这篇论文提出了一个全面的GraphRAG框架,并详细介绍了其在不同领域的应用。通过整合图结构数据,GraphRAG能够有效捕捉和利用关系信息,提高下游任务的执行效果。论文的贡献包括:
-
提出了一个包含五个关键组件的GraphRAG框架,并详细介绍了每个组件的设计和技术。
-
通过在多个领域进行实验,验证了GraphRAG在不同任务中的有效性和适应性。
-
讨论了当前GraphRAG研究的挑战和未来方向,为进一步的研究提供了有价值的见解。
论文评价
优点与创新
-
全面性:论文提出了一个全面的GraphRAG框架,涵盖了查询处理器、检索器、组织者、生成器和数据源五个关键组件,并对每个组件的代表性技术进行了详细回顾。
-
领域定制化:论文将GraphRAG设计分为10个不同领域,包括知识图谱、文档图谱、科学图谱、社交图谱等,并对每个领域的独特应用和特定的图构建方法进行了总结。
-
挑战与未来方向:论文指出了当前GraphRAG研究中的挑战,并提出了未来的研究方向,激发了跨学科的机会。
-
丰富的资源:论文总结了丰富的基准数据集和工具资源,便于研究人员和从业者进一步探索和应用。
-
系统性综述:论文系统地回顾了GraphRAG的关键概念和技术,填补了现有文献中的空白。
不足与反思
-
图谱构建:如何构建图谱、图的格式选择以及多模态图的构建是挑战之一。
-
检索器:区分神经知识和符号知识、内部和外部知识的协调、检索内容的准确性、多样性和新颖性的平衡、推理和规划的动态更新是主要挑战。
-
组织者:在保持信息完整性和简洁性之间的平衡、最优的数据结构化、不同资源的对齐、数据增强是主要挑战。
-
生成器:提示的正确格式、结构编码的集成是主要挑战。
-
GraphRAG系统:组件之间的无缝集成、可扩展性、可靠性、鲁棒性、隐私、可解释性是主要挑战。
-
评估:组件级别的最优性、端到端基准、任务和领域特定的评估、可信度基准是主要挑战。
-
新应用:扩展到其他领域(如代码生成和网络安全防御)面临独特的挑战,需要理解特定领域的要求和数据结构。
关键问题及回答
问题1:GraphRAG框架中的查询处理器是如何处理用户查询的?其主要技术有哪些?
查询处理器是GraphRAG框架的第一个关键组件,负责处理用户查询,提取实体和关系,并将查询结构化。其主要技术包括:
-
实体识别:从查询中识别出文本中的实体(如人名、地名、组织名等)。
-
关系提取:从查询中提取实体之间的关系(如人物关系、组织关系等)。
-
查询结构化:将提取的实体和关系组织成结构化的查询,以便后续的检索和处理。
-
查询分解:将复杂查询分解为多个子查询,分别进行处理,最后再综合结果。
-
查询扩展:基于语义相似性或其他规则扩展查询,以覆盖更多相关信息。
这些技术共同作用,确保查询处理器能够准确理解用户意图,并为后续的检索器提供高质量的查询输入。
问题2:GraphRAG框架中的检索器有哪些类型?每种类型的检索器在处理图结构数据时有哪些优势?
GraphRAG框架中的检索器主要有三种类型:
-
基于启发式的检索器:这类检索器使用预定义的规则、领域特定的知识和硬编码的算法来提取相关信息。其优势在于高效且资源消耗较少,特别适用于规则明确且变化不大的场景。例如,基于BFS或DFS的图遍历方法可以在常数时间内执行,且不需要训练数据。
-
基于学习的检索器:这类检索器通过机器学习模型(如神经网络)来捕捉图结构数据中的模式和关系。其优势在于能够处理复杂的查询和大规模数据集,但需要大量的训练数据和计算资源。例如,使用图神经网络(GNNs)进行节点和边的嵌入表示,可以实现高效的图检索。
-
领域特定的检索器:这类检索器针对特定领域的图结构数据进行优化,利用领域专家知识和特定领域的特征来提高检索效果。其优势在于能够充分利用领域特性,提高检索的准确性和效率。例如,在药物发现领域,检索器可以利用已知的药物结构和性质来提高分子检索的准确性。
这些检索器各有优势,通常在实际应用中会结合使用,以应对不同场景下的检索需求。
问题3:GraphRAG框架中的组织者如何处理检索到的内容?其主要技术有哪些?
组织者负责处理检索到的内容,以便更好地适应生成器的输入。其主要技术包括:
-
图剪枝:去除检索到的图中的冗余和无关节点和边,减少噪声,提高生成内容的质量。
-
重排:对检索到的内容进行重新排序,优先处理与查询最相关的部分,以提高生成内容的连贯性和相关性。
-
图增强:向检索到的图中添加额外的信息,如节点特征、边权重等,以丰富检索内容的多样性,提高生成结果的鲁棒性。
-
文本化:将图结构数据转换为自然语言文本,以便生成器能够直接处理。常用的方法包括线性文本化和模型基础的文本化。
这些技术共同作用,确保检索到的内容在传递给生成器之前已经被精炼和组织,从而提高最终生成结果的质量和准确性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。