二自由度悬架建模Simulink

本文详细介绍了某B级车型的四分之一悬架参数,包括簧载质量和非簧载质量,以及悬架和轮胎的刚度。探讨了二自由度半主动悬架的动力学模型,基于牛顿第二定律,构建了动力学表达式,并展示了在Simulink中的实现。研究焦点在于智能优化的滑模控制在半主动悬架中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

某 B 级车型的四分之一悬架参数如表所示:

参数名称符号数值单位
簧载质量 m s m_s ms340kg
非簧载质量 m u m_u mu45kg
悬架刚度 k s k_s ks19500N/m
轮胎刚度 k t k_t kt200000N/m
最大阻尼系数 c m a x c_{max} cmax3800N ⋅ \cdot s/m
最小阻尼系数 c m i n c_{min} cmin1000N ⋅ \cdot s/m
被动阻尼系数 c 0 c_0 c02000N ⋅ \cdot s/m

二自由度悬架模型的建立有前提条件:

  1. 只考虑车辆受到路面激励后的垂直运动;
  2. 悬架刚度以及轮胎刚度为定值;
  3. 忽略轮胎阻尼,车辆在行驶过程中,轮胎与路面始终保持良好的接触条件。

二自由度半主动悬架模型的基本结构如下图所示,图中 m s m_s ms 代表簧载质量(主要包括车身以及底盘), m u m_u mu 代表非簧载质量(包括车轮以及制动、转向系统), x s x_s xs 代表车身位移, x u x_u xu 代表非簧载质量位移, x r x_r xr 代表路面激励位移, C 0 C_0 C0 代表原车阻尼系数, k s k_s ks 代表悬架刚度, k r k_r kr 代表轮胎刚度, u u u 代表半主动悬架阻尼力。
在这里插入图片描述
选取悬架各系统变量的静平衡位置为坐标原点,根据牛顿第二定律,二自由度悬架模型的动力学表达式为:
{ m s x ¨ s + c 0 ( x ˙ s − x ˙ u ) + k s ( x s − x u ) − u = 0 m u x ¨ u − c 0 ( x ˙ s − x ˙ u ) − k s ( x s − x u ) + k r ( x u − x r ) + u = 0 \begin{cases} m_s\ddot x_s + c_0(\dot x_s-\dot x_u) + k_s(x_s-x_u) - u = 0\\ m_u\ddot x_u - c_0(\dot x_s-\dot x_u) - k_s(x_s-x_u) + k_r(x_u-x_r) + u = 0 \end{cases} {msx¨s+c0(x˙sx˙u)+ks(xsxu)u=0mux¨uc0(x˙sx˙u)ks(xsxu)+kr(xuxr)+u=0

二自由度悬架动力学模型 Simulink 中的框图如下图所示:
在这里插入图片描述

[参考文献]:刘善辉.半主动悬架的智能优化滑模控制研究[D].吉林大学

### 二自由度悬架模型Simulink中的实现方法 #### 模型构建基础理论 二自由度悬架模型通常描述的是车身和车轮之间的运动关系,其核心在于质量-弹簧-阻尼系统。该模型可以表示为两个微分方程组,分别对应于车身垂直方向上的运动以及车轮相对于地面的相对位移[^1]。 #### 路面激励与功率谱密度 为了更真实地反映实际驾驶条件下的车辆动态行为,在Simulink中可以通过随机过程生成器创建符合ISO标准的道路输入信号。这些信号利用功率谱密度(PSD)函数定义,并通过逆快速傅里叶变换转换成时间序列数据作为外部载荷施加到悬架上。 ```matlab % 功率谱密度计算示例代码 function PSD = calculate_PSD(frequency, velocity) % ISO8606 Class B Road Profile Gq = 0.0002; n = 2; v = velocity; % m/s omega = frequency * (2*pi); S_q = Gq / ((omega/v)^n); PSD = abs(S_q); end ``` #### Simulink建模步骤概述 在Matlab/Simulink环境下搭建二自由度悬架模型时,主要涉及以下几个部分: 1. **动力学方程表达** 使用状态空间形式或者直接写出牛顿第二定律对应的微分方程式来描绘整个系统的力学特性。 2. **传递函数设定** 对应不同的阻尼系数情况设置相应的传递函数模块,以便研究各种工况下系统的响应差异性。 3. **控制系统集成** 如果考虑加入主动/半主动控制机制,则需额外引入控制器算法比如PID、Fuzzy Logic Controller等元件完成闭环反馈回路的设计工作[^4]。 #### 示例代码片段展示 以下是简单的二阶线性常微分方程求解程序框架供参考学习之用: ```matlab % 定义物理量参数 m_body = ... ; % Body mass [kg] k_spring = ... ; % Spring stiffness constant [N/m] c_damper = ... ; % Damping coefficient [Ns/m] sys_tf = tf([1],[m_body c_damper k_spring]); step(sys_tf) figure(2),bode(sys_tf) grid on title('Frequency Response') xlabel('\omega rad/sec'),ylabel('|G(j\omega)| dB & \angle(G(j\omega)) deg') legend('Body Displacement','Location','BestOutside') ``` 上述脚本展示了如何运用Transfer Function block 构造基本的单输入输出SISO system 并绘制单位阶跃响应曲线图以及频率特性的伯德图(Bode Plot). #### 性能评估手段介绍 通过对所建立好的虚拟样机执行一系列测试操作之后可以获得诸如车身加速度水平、轮胎接地点处跳动幅度大小之类的量化评价指标数值信息用来衡量当前设计方案优劣程度的好坏状况。同时借助FFT技术还能进一步深入剖析各个频带范围内能量分布特征从而指导后续改进措施制定实施计划安排等工作环节开展进程推进效率提升等方面发挥重要作用价值意义非凡之处所在即体现于此方面之上[ ^{2} ]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值