GMSK的相干和非相干“基于PAM表示的串行接收器PAM“研究(Matlab代码实现)

  💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

GMSK的相干和非相干基于PAM表示的串行接收器PAM研究

用于GMSK的相干和非相干“基于PAM表示的串行接收器”。首先,研究了PAM表示思想,并解决了一个样例问题,以便充分可视化问题。然后,基于这种新的CPM信号形式构建串行接收器。

一、引言

在数字通信系统中,高斯最小频移键控(GMSK)是一种常用的调制方式,它结合了高斯滤波和最小频移键控的优点,具有恒定的包络和较高的频谱效率。为了更有效地接收GMSK信号,研究者们提出了基于脉冲幅度调制(PAM)表示的串行接收器。这种接收器可以分别实现相干和非相干检测,以适应不同的通信环境。

二、PAM表示思想研究

PAM是一种基本的数字调制方式,它通过改变信号的幅度来传递信息。在GMSK的PAM表示中,我们将GMSK信号看作是由一系列PAM脉冲组成的序列。这些PAM脉冲的幅度和相位都与GMSK信号的相位变化有关。

为了充分可视化PAM表示的问题,我们解决了一个样例问题。假设我们有一个简单的GMSK信号,其相位变化是已知的。我们可以将这个信号分解为一系列PAM脉冲,并计算每个脉冲的幅度和相位。通过这种方法,我们可以将GMSK信号转换为PAM表示,从而更直观地理解其特性。

三、基于PAM表示的串行接收器构建

  1. 相干接收器

相干接收器需要知道发送信号的相位信息,以便进行准确的解调。在GMSK的相干接收器中,我们可以利用PAM表示来简化解调过程。首先,我们通过匹配滤波器对接收到的信号进行滤波,以提取PAM脉冲。然后,我们利用已知的相位信息对每个PAM脉冲进行解调,恢复出原始的比特信息。

  1. 非相干接收器

非相干接收器不需要知道发送信号的相位信息,因此更加适用于存在相位误差或相位不确定性的通信环境。在GMSK的非相干接收器中,我们可以利用PAM表示的幅度信息来进行解调。具体来说,我们可以通过计算每个PAM脉冲的幅度来估计其对应的比特值。由于非相干接收器不需要精确的相位信息,因此其实现相对简单且鲁棒性较强。

四、结论

通过对GMSK的相干和非相干基于PAM表示的串行接收器进行研究,我们发现PAM表示可以有效地简化GMSK信号的解调过程。无论是相干接收器还是非相干接收器,都可以利用PAM表示的幅度和相位信息来恢复出原始的比特信息。这种基于PAM表示的串行接收器具有实现简单、性能稳定等优点,在数字通信系统中具有广泛的应用前景。

需要注意的是,虽然PAM表示在GMSK信号的解调中具有一定的优势,但其性能仍然受到多种因素的影响,如噪声、干扰等。因此,在实际应用中,我们需要根据具体的通信环境和需求来选择合适的接收器类型和参数设置。

📚2 运行结果

部分代码:

% GMSK Parameters
sps = 4; % oversampling ratio
BT = 0.5; % time bandwidth product
Tsymbol = 1/1; % symbol interval
modIndex = 0.5; % modulation index (always 0.5 for msk)
Tsample = Tsymbol/sps; % sampling interval
L = 3; % Gaussian filter extent
M = 7; % differential encoding depth, 1 means no extra differential encoding (pure gmsk)
N = 30; % Wiener filter coefficients

% Generation of h_k filters (Simple Coherent Receivers for Partial Response
% Continuous Phase Modulation, Kaleh, pp. 1428)
t = transpose(0:Tsample:(L+1)*Tsymbol);
Ik{1} = [-L:-1]; Ik{2} = [-3 -1 1];
Ik{3} = [-3 -2 2]; Ik{4} = [-3 1 2];

% h{1} = h_0, due to matlab not having 0 as indices of a vector
h = cell(length(Ik), 1);
for k=1:length(Ik)
    h{k} = h_func(t, Tsymbol, L, BT, Ik{k}); 
    plot(t/Tsymbol, h{k}); hold on;
end
legend({'h_0(t)', 'h_1(t)', 'h_2(t)', 'h_3(t)'})
xlabel('t/T'); ylabel('Amplitude')

% optimum filter for h0 branch
% g = (h0+h1)*c, where c is the wiener filter and * denotes the convolution
% operation, g is in sample time and c is in symbol time periods.
[g, g_k, c] = optimum_filter(h, 2, N, sps);


% generate input bits
input_bits = randi([0 1], 5e5, 1)*2-1;

% differential encoding (for differentially coherent GMSK)
beta = input_bits;
beta = mDiffEnc(beta, M);

% differential decoding (for coherent GMSK)
input_bits_precoded = precoder(input_bits);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]滕飞,李云涛,廖育荣.一种改进的GMSK相干解调方法[J].电讯技术, 2020(012):060.

[2]滕飞,李云涛,廖育荣.一种改进的GMSK相干解调方法[J].电讯技术, 2020, 60(12):5.DOI:10.3969/j.issn.1001-893x.2020.12.014.

[3] Napolitano A ,Member,IEEE,et al.Cyclic spectral analysis of continuous-phase modulated signals[J].IEEE Transactions on Signal Processing, 2001, 49(1):30-44.DOI:10.1109/78.890336.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值