✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本文深入探讨了一种融合快速探索随机树(Rapidly-exploring Random Tree, RRT)算法与Dubins路径规划理论的路径规划方法,并着重研究了其在复杂环境中实现有效避障的关键策略。传统的RRT算法在处理非完整约束的机器人(如车辆、飞机等)路径规划问题时存在局限性,其生成的路径可能无法直接执行。Dubins路径规划则为具有固定最小转弯半径的机器人提供了最短的可行路径。本文旨在通过将Dubins路径规划的思想融入RRT的生长过程中,生成更符合机器人运动学约束的路径,并在此基础上研究在障碍物密集或未知环境中,如何高效地进行碰撞检测与规避。研究内容涵盖了改进的RRT生长机制、基于Dubins曲线的连接策略、以及多种避障技术(包括局部调整、路径平滑等)的应用与优化。实验结果表明,该方法能够有效地在复杂环境中规划出一条从起点到终点的、满足机器人运动学约束的、且能够有效避开障碍物的路径,为自主导航系统的设计与实现提供了理论基础与技术支撑。
关键词: 路径规划;快速探索随机树(RRT);Dubins路径;避障;非完整约束;机器人导航
1. 引言
路径规划是机器人学领域的核心问题之一,其目标是在给定的环境中找到一条从起始点到目标点的无碰撞路径。对于具有非完整约束的机器人,如地面车辆、无人机等,传统的基于欧几里得距离或网格地图的路径规划算法(如Dijkstra算法、A*算法等)往往无法生成直接可执行的路径,因为它们没有考虑机器人的最小转弯半径、最大转向角速度等运动学限制。
快速探索随机树(RRT)算法是一种基于采样的概率完备路径规划算法,它以其在复杂高维空间中快速探索的能力而闻名。RRT通过在状态空间中随机采样,并逐步扩展一棵连接起点到目标区域的树,从而找到一条可行路径。然而,原始的RRT算法生成的路径通常由直线段连接而成,这对于非完整约束机器人来说是不可行的。
Dubins路径规划是针对具有固定最小转弯半径的二维平面运动机器人提出的一种经典理论。Dubins路径由至多三段基本曲线(直线段 L、右转圆弧 R、左转圆弧 S)组成,包括 LSL, LSR, RSL, RSR, LRL, RLR 等六种基本组合。Dubins路径的突出优点在于其能够保证路径是可行的且是局部最优的。
将Dubins路径规划与RRT算法相结合,可以有效解决RRT在处理非完整约束机器人路径规划时的难题。其基本思想是在RRT树的生长过程中,使用Dubins曲线来连接树中的节点和新采样的点,或者连接树中的两个节点,从而生成更符合机器人运动学特性的路径段。然而,在实际应用中,复杂环境中的障碍物是路径规划必须考虑的重要因素。如何有效地检测障碍物、规避障碍物,并确保生成的Dubins路径段是无碰撞的,是实现鲁棒路径规划的关键。
本文旨在对基于RRT和Dubins路径规划的避障技术进行深入研究。首先,我们将回顾RRT算法和Dubins路径规划的基本原理及其在路径规划领域的应用。然后,我们将详细阐述如何将Dubins路径规划融入RRT的生长过程中,并提出改进的连接策略。接着,我们将重点讨论在结合Dubins曲线进行路径规划时,如何进行高效准确的碰撞检测,并研究多种避障技术,包括在树生长过程中的障碍物规避以及对已规划路径的局部调整和后处理平滑。最后,通过仿真实验验证所提方法的有效性,并对研究成果进行总结与展望。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇