❝
gmx_MMPBSA,
它搭建了GROMACS与AMBER分析模块之间的桥梁,支持用户计算MMPBSA和MMGBSA。就我个人而言,我更喜欢使用MMGBSA,因为它不仅计算速度更快,而且出现异常值的概率也比MMPBSA更低。接下来就详细介绍此工具的安装以及使用过程。
1.安装系统
Linux 或 WSL1/2
2.安装Miniconda或Anaconda
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash ~/Miniconda3-latest-Linux-x86_64.sh
3.在conda环境下执行以下命令
下面要用到的env.yml
文件下载地址: https://valdes-tresanco-ms.github.io/gmx_MMPBSA/dev/env.yml
conda env create --file env.yml
conda activate gmxMMPBSA
python -m pip install gmx_MMPBSA
验证是否安装成功:
gmx_MMPBSA --help
返回结果如下则表明安装成功:
4.运行
准备MMGBSA计算的参数文件mmgbsa.in
:
-
蛋白-蛋白体系:
&general
sys_name="Prot-Prot",
startframe=9000,
endframe=10000,
interval=10,
forcefields="leaprc.protein.ff14SB",
/
&gb
igb=2, saltcon=0.150,
/
&decomp
idecomp=3, print_res="A/1-59;B/1-106"
dec_verbose=0,
/
-
蛋白-小分子体系:
&general
sys_name="Prot-Lig-ST",
startframe=9000,
endframe=10000,
interval=10
/
&gb
igb=5, saltcon=0.150,
/
&decomp
idecomp=3, print_res="A/1-59;B/1"
dec_verbose=0,
/
-
蛋白-DNA体系:
&general
sys_name="Prot-DNA"
startframe=9000,
endframe=10000,
interval=10,
PBRadii=4
/
&gb
igb=8, saltcon=0.150, intdiel=10
/
&decomp
idecomp=3, print_res="A/1-59;B/1-106"
dec_verbose=0,
/
以上参数和amber里的参数兼容,不懂得可以翻阅amber手册查询。 根据自己的体系准备好mmgbsa.in
文件后,执行下行命令执行MMGBSA计算:
gmx_MMPBSA -O -i mmgbsa.in -cs 4PRO.tpr -ct traj~center.xtc -ci ../index.ndx -cg 3 4 -cp ../topol.top -o FINAL_RESULTS_MMPBSA.dat -eo FINAL_RESULTS_MMPBSA.csv
其中-cg 参数指定在index文件中两个组别的序号。这里3号组别对应receptor,而4号组的原子对应ligand。
至此,大功告成!接下来等计算结果就ok了。 输出的结果重点关注:FINAL_RESULTS_MMPBSA.csv
以及FINAL_DECOMP_MMPBSA.dat
前者包含每帧的能量以及各项拆分值,后者包含每个残基的能量分解。