移动机器人链式系统
一、链式系统
- 链式系统是一种特殊的非线性无漂移系统
链形式:
z 1 ˙ = v 1 \dot{z_{1}} = v_{1} z1˙=v1
z 2 ˙ = v 2 \dot{z_{2}} = v_{2} z2˙=v2
z 3 ˙ = z 2 v 1 \dot{z_{3}} = z_{2} v_{1} z3˙=z2v1
. . . . . . ...... ......
z R ˙ = z R − 1 v 1 \dot{z_{R}} = z_{R-1} v_{1} zR˙=zR−1v1
整体形式为 a ( 2 , n ) a(2, n) a(2,n),2为输入,n为状态数。
二、链式是可控的
因为
z ˙ = ( z 1 ˙ . . . z n ˙ ) = ( 1 0 z 2 . . . z n − 1 ) v 1 + ( 0 1 0 . . . 0 ) v 2 = g 1 v 1 + g 2 v 2 \dot{z}= \begin{pmatrix} \dot{z1} \\ ...\\ \dot{z_{n}} \end{pmatrix} = \begin{pmatrix}1\\0\\ z_{2} \\ ...\\ z_{n-1} \end{pmatrix}v_{1} + \begin{pmatrix} 0 \\ 1\\0\\...\\ 0 \end{pmatrix}v_{2}=g_{1}v_{1}+g_{2}v_{2} z˙=⎝⎛z1˙...zn˙⎠⎞=⎝⎜⎜⎜⎜⎛10z2...zn−1⎠⎟⎟⎟⎟⎞v1+⎝⎜⎜⎜⎜⎛010...0⎠⎟⎟⎟⎟⎞v2=g1v1+g2v2
r a n k ( ∣ ∣ ∣ g 1 g 2 . . . . . . . g n ∣ ∣ ∣ ) = n rank \begin{pmatrix} | &| & & | \\ g_{1} & g_{2}& ....... & g_{n}\\ | &| & & | \end{pmatrix}=n rank⎝⎛∣g1∣∣g2∣.......∣gn∣⎠⎞=n
二、链式系统与动力学模型
对独轮车来说,运动学模型与链式的输入变换公式:
z 1 = θ z_{1}=\theta z1=θ
z 2 = x cos θ + y sin θ z_{2} = x\cos\theta+y\sin\theta z2=xcosθ+ysinθ
z 3 = x sin θ − y cos θ z_{3} = x\sin\theta-y\cos\theta z3=xsinθ−ycosθ
v 1 = ω v_{1}=\omega v1=ω
v 2 = v − z 3 ω v_{2} = v-z_{3}\omega v2=v−z3ω
推导如下:
z 1 ˙ = θ ˙ = ω = v 1 \dot{z_{1}} = \dot{\theta}=\omega=v_{1} z1˙=θ˙=ω=v1
z 2 ˙ = x ˙ cos θ − x sin θ θ ˙ + y ˙ sin θ + y cos θ θ ˙ = x ˙ cos θ + y ˙ sin θ − ( x sin θ − y cos θ ) θ ˙ = v − z 3 ω = v 2 \dot{z_{2}} = \dot{x}\cos\theta-x\sin\theta\dot{\theta}+\dot{y}\sin\theta+y\cos\theta\dot{\theta}= \dot{x}\cos\theta+\dot{y}\sin\theta-(x\sin\theta-y\cos\theta)\dot{\theta}= v-z_{3}\omega=v_{2} z2˙=x˙cosθ−xsinθθ˙+y˙sinθ+ycosθθ˙=x˙cosθ+y˙sinθ−(xsinθ−ycosθ)θ˙=v−z3ω=v2
z 3 ˙ = z 2 v 1 \dot{z_{3}} = z_{2} v_{1} z3˙=z2v1