移动机器人链式系统 Chain Form of Mobile Robot


一、链式系统

  • 链式系统是一种特殊的非线性无漂移系统

链形式:

z 1 ˙ = v 1 \dot{z_{1}} = v_{1} z1˙=v1

z 2 ˙ = v 2 \dot{z_{2}} = v_{2} z2˙=v2

z 3 ˙ = z 2 v 1 \dot{z_{3}} = z_{2} v_{1} z3˙=z2v1

. . . . . . ...... ......

z R ˙ = z R − 1 v 1 \dot{z_{R}} = z_{R-1} v_{1} zR˙=zR1v1

整体形式为 a ( 2 , n ) a(2, n) a(2,n),2为输入,n为状态数。

二、链式是可控的

因为

z ˙ = ( z 1 ˙ . . . z n ˙ ) = ( 1 0 z 2 . . . z n − 1 ) v 1 + ( 0 1 0 . . . 0 ) v 2 = g 1 v 1 + g 2 v 2 \dot{z}= \begin{pmatrix} \dot{z1} \\ ...\\ \dot{z_{n}} \end{pmatrix} = \begin{pmatrix}1\\0\\ z_{2} \\ ...\\ z_{n-1} \end{pmatrix}v_{1} + \begin{pmatrix} 0 \\ 1\\0\\...\\ 0 \end{pmatrix}v_{2}=g_{1}v_{1}+g_{2}v_{2} z˙=z1˙...zn˙=10z2...zn1v1+010...0v2=g1v1+g2v2

r a n k ( ∣ ∣ ∣ g 1 g 2 . . . . . . . g n ∣ ∣ ∣ ) = n rank \begin{pmatrix} | &| & & | \\ g_{1} & g_{2}& ....... & g_{n}\\ | &| & & | \end{pmatrix}=n rankg1g2.......gn=n

二、链式系统与动力学模型

在这里插入图片描述

对独轮车来说,运动学模型与链式的输入变换公式:

z 1 = θ z_{1}=\theta z1=θ

z 2 = x cos ⁡ θ + y sin ⁡ θ z_{2} = x\cos\theta+y\sin\theta z2=xcosθ+ysinθ

z 3 = x sin ⁡ θ − y cos ⁡ θ z_{3} = x\sin\theta-y\cos\theta z3=xsinθycosθ

v 1 = ω v_{1}=\omega v1=ω

v 2 = v − z 3 ω v_{2} = v-z_{3}\omega v2=vz3ω

推导如下:

z 1 ˙ = θ ˙ = ω = v 1 \dot{z_{1}} = \dot{\theta}=\omega=v_{1} z1˙=θ˙=ω=v1

z 2 ˙ = x ˙ cos ⁡ θ − x sin ⁡ θ θ ˙ + y ˙ sin ⁡ θ + y cos ⁡ θ θ ˙ = x ˙ cos ⁡ θ + y ˙ sin ⁡ θ − ( x sin ⁡ θ − y cos ⁡ θ ) θ ˙ = v − z 3 ω = v 2 \dot{z_{2}} = \dot{x}\cos\theta-x\sin\theta\dot{\theta}+\dot{y}\sin\theta+y\cos\theta\dot{\theta}= \dot{x}\cos\theta+\dot{y}\sin\theta-(x\sin\theta-y\cos\theta)\dot{\theta}= v-z_{3}\omega=v_{2} z2˙=x˙cosθxsinθθ˙+y˙sinθ+ycosθθ˙=x˙cosθ+y˙sinθ(xsinθycosθ)θ˙=vz3ω=v2

z 3 ˙ = z 2 v 1 \dot{z_{3}} = z_{2} v_{1} z3˙=z2v1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是土豆大叔啊!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值