旋转向量与旋转矩阵的相互转化

该文章描述了旋转向量与旋转矩阵之间的转换方法。通过给定的欧拉角,计算旋转矩阵,反之亦然。提供的C++代码片段展示了如何使用Eigen库进行这些转换,包括弧度制下的正弦和余弦函数,以及确保旋转矩阵的规范化。
摘要由CSDN通过智能技术生成

旋转向量 θ a \theta a θa,旋转矩阵R
W = [ θ a ] × W=[\theta a]_{\times} W=[θa]×
d = ∣ θ a ∣ d =|\theta a| d=θa
R = I + W s i n ( d ) d + W 2 ( 1 − c o s ( d ) ) d 2 R = I + \frac{W sin(d)}{d} + \frac{W^2 (1-cos(d))}{d^2} R=I+dWsin(d)+d2W2(1cos(d))

Eigen::Matrix3d ExpSO3(const double x, const double y, const double z) {
  const double d2 = x * x + y * y + z * z;
  const double d = sqrt(d2);
  Eigen::Matrix3d W;
  W << 0.0, -z, y, z, 0.0, -x, -y, x, 0.0;
  if (d < 1e-5) {
    Eigen::Matrix3d res = Eigen::Matrix3d::Identity() + W + 0.5 * W * W;
    return NormalizeRotation(res);
  } else {
    Eigen::Matrix3d res = Eigen::Matrix3d::Identity() + W * sin(d) / d + W * W * (1.0 - cos(d)) / d2;
    return NormalizeRotation(res);
  }
}

θ = a r c c o s ( t r − 1 2 ) \theta =arccos( \frac{tr - 1}{2}) θ=arccos(2tr1)
a = R − R T s i n ( θ ) a =\frac{R-R^T}{sin(\theta)} a=sin(θ)RRT

Eigen::Vector3d LogSO3(const Eigen::Matrix3d& R) {
  const double tr = R(0, 0) + R(1, 1) + R(2, 2);
  Eigen::Vector3d w;
  w << (R(2, 1) - R(1, 2)) / 2, (R(0, 2) - R(2, 0)) / 2, (R(1, 0) - R(0, 1)) / 2;
  const double costheta = (tr - 1.0) * 0.5f;
  if (costheta > 1 || costheta < -1)  // 说明R不是旋转矩阵,抛出异常
    return w;
  const double theta = acos(costheta);
  const double s = sin(theta);
  if (fabs(s) < 1e-5)
    return w;
  else
    return theta * w / s;
}
在C语言中,将旋转向量(也称为单位向量轴和旋转角度)换为旋转矩阵可以分为两个步骤:计算旋转半径(即旋转角度除以2)以及利用叉乘运算构建旋转矩阵。假设我们有一个单位长度的旋转向量`axis`和旋转角度`angle`,以下是这个过程的示例: ```c #include <math.h> #define PI 3.14159265358979323846 // 函数原型声明 void rotateVectorToMatrix(float axis[3], float angle, float matrix[9]); // 主要函数实现 void rotateVectorToMatrix(float axis[3], float angle, float matrix[9]) { float sin_angle = sinf(angle); float cos_angle = cosf(angle); // 第一行 matrix[0] = cos_angle; // [1,0,0] matrix[1] = axis[0] * sin_angle; // [0,1,0] matrix[2] = axis[1] * sin_angle; // [0,0,1] // 第二行 matrix[3] = -axis[2] * sin_angle; // [0,0,-1] matrix[4] = cos_angle; // [0,1,0] matrix[5] = axis[2] * cos_angle + axis[0] * sin_angle; // [-axis[0]*sin_angle,0,cos_angle] // 第三行 matrix[6] = axis[1] * sin_angle; // [0,0,1] matrix[7] = -axis[0] * sin_angle - axis[2] * cos_angle; // [0,-axis[1]*sin_angle,cos_angle] // 设置第三行余下元素和第四行全为0,因为旋转向量是单位向量,其余分量不会影响旋转 matrix[8] = 0; // [0,0,0] matrix[9] = 0; matrix[10] = 0; // 最后一个元素设为1(对应于平移不影响旋转) matrix[11] = 1; } // 示例使用 float axis[] = {0.0, 1.0, 0.0}; // x轴旋转 float angle = 45.0 * PI / 180.0; // 45度 float rotation_matrix[9]; rotateVectorToMatrix(axis, angle, rotation_matrix); ``` 在这个例子中,`rotation_matrix`是一个3x3的矩阵,存储了旋转后的变换。注意,这仅适用于绕X、Y、Z轴的旋转,实际应用可能需要根据旋转轴的实际方向调整计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值