深度学习入门(第二天)——走进深度学习的世界 神经网络模型

一、反向传播计算方法

简单的例子:

如何让 f 值更小,就是改变x、y、z,而损失函数也是这样,那么我们分别求偏导,则能得出每个值对结果的影响

链式法则

  • 梯度是一步一步传的

复杂的例子:

二、神经网络整体架构

类生物神经元

左半边是生物学上的神经元,右半边是数学上的“神经元”,可以说是非常像。

整体架构

  • input layer输入层:比如输入X,有多少个x即有多少个input,比如前面的猫有3千多像素点,那么就有3千多个“圈”进行input。

  • hidden layer 1:指将X做了某些变换,且每个圈与前者的全部圈都连接,即是全连接,为什么多了1个圈,是表示可能会在原始特征的基础上做变换,变成4个特征。具体如:假设X输入的是年龄,第一圈表示对年龄做平方,第二个圈表示将年龄与其它值相加相乘等等。

  • W1:input是3个,hidden layer 1是4个,那么夹在中间的W1就是[3,4]的权重矩阵。

  • hidden layer 2:指在1的基础上再进行变换,防止如果hidden layer 1的效果不好,那么加多一层,进行再加工。

  • W2:hidden layer 1是4个,hidden layer 2是4个,那么夹在中间的W2就是[4,4]的权重矩阵。

  • output layer:输出结果。

  • W3:hidden layer 2是4个,output layer 2是1个,那么夹在中间的W3就是[4,1]的权重矩阵。

整体大致公式:

  • 基本架构:

  • 继续堆叠一层:

  • 神经网络的强大之处在于,用更多的参数来拟合复杂的数据

三、神经元个数对结果的影响

ConvNetJS demo: Classify toy 2D data

越多的神经元个数,切分的越明显

如1个神经元:

目的是区分绿色和红色的点,当只有1个神经元时,可以明显看到类似一刀切。

如10个神经元:

可以看到已经切分的非常明显了

另外:在机器学习中,如果数据是完全随机的情况,模型是无法分辨的,但神经网络可以。如下图

这就是神经网络的强大之处,越多神经元区分的越明显,不过也可能存在过拟合,因为太强大了。

四、正则化与激活函数

  • 惩罚力度对结果的影响:

惩罚力度过小(左图),导致的结果是过拟合,有几个红色点明明应该更靠近绿色也被评定为红色。这些一般是训练集的情况,有标签能学到,但是在测试集可能就是灾难了。随着lambda的增大,切分的会相对平滑。

  • 参数个数对结果的影响:

同样,神经元个数越多,也越容易过拟合

  • 激活函数

做非线性变换,如Sigmoid、Relu、Tanh等

激活函数对比

  • Sigmoid:

    其缺点是,靠两边的线过于平缓,无法计算梯度或者约等于0,那么值就不会进行更新或者前向传播,而我们恰恰需要传播来更新我们的W值(前面讲到)

  • Relu:

    市面上绝大多数神经网络用的激活函数,这个是绝对会有梯度,不会出现梯度消失。

五、神经网络过拟合解决方法

  • 不同的预处理结果会使模型的结果发生很大的差异:

    如常见的标准化

  • 参数初始化:通常使用随机策略进行参数初始化

  • DROP-OUT:在神经网络训练过程中,随机去掉部分神经元,以减少神经元的个数,并不是简单的去掉部分,而且每次训练都随机去掉部分。

    这样保证每次训练的神经网络都相对简单,每次训练可以DROP-OUT一部分神经元

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值