【数字人】使用Metahuman创建数字人模型(中)

本文介绍了如何借助UE5的Metahuman插件,通过照片或扫描模型生成数字人,简化数字人建模流程。首先启用Metahuman插件,接着导入照片创建材质并匹配模型,然后进行自动追踪帧调整,生成初步的数字人模型。尽管存在一些细节上的差异,但该方法大大减少了传统建模所需的时间,尤其适合用扫描模型进行解算,能获得较高相似度的数字人模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、引言

通过UE5的metahuman插件可以一张照片或者一个扫描的人头模型或者自己雕刻的头像生成metahuman模型。当然这样产出的metahuman依然跟原照片会有比较大的区别,但是可以作为底模型来修改可以大大的减轻原本的数字人流程时间,接下来带大家看看这个照片识别头部模型黑科技是这么操作的,模型的流程也是一样的。

二、操作流程

1、插件栏搜索metahuman插件然后启用,会提示重启重启一下就好了,这是官方的免费插件还没获取可以去epic虚幻商城去免费购买。

在这里插入图片描述

2、用虚幻建模工具新建一个正方体,然后新建材质再将我们要用到的一张照片导入并创建材质球赋予给新建的正方体。

3、在内容浏览器新建metahuamn本体,可以给他修改一下命名,这个名字是上传到metahuman网页端的名字。

在这里插入图片描述

4、打开metahuman本体点击网格体中的组件,选中你刚才创建的正方体。

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这类报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵境引路人

感谢投喂 ~ ❤

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值