SLAM实习学习资料


一、ORB-SLAM2

1、ORBSLAM的初始化方式
2、ORB特征点与SIFT、SURF的区别,其他提取特征点的方法
3、简述EPnP算法的大致步骤
4、ORB特征点的特性(回答围绕旋转、尺度不变性还有消耗时间三个方面)
5、ORBSLAM中如何使用g2o进行优化
6、特征点法和直接法的区别
7、具体介绍一下ORBSLAM,及其可以创新的地方
8、ORB用什么方法提取角点和描述子
9、ORB提取不到特征点的地方怎么办
10、Homography和Fundamental Matrix的区别,包括二者区别,几个自由度,为什么是这么多自由度,怎么计算

二、VINS

1、vins中如何将IMU数据与camera融合到一起的?简述vins的大致框架
2、VINS的初始化
3、简述ORBSLAM和vins的区别,以及两者的缺点
4、vins预积分的推导过程
5、vins的最新版本

三、C++

1、简述栈和堆的区别
2、虚函数和纯虚函数的区别
3、容器及其特点
4、C++设计模式
5、const在不同位置的含义
  const void print(const int num)const 第一个const修饰返回类型 第二个const修饰参数 第三个const修饰调用对象
6、static关键字的作用
7、智能指针及其特点
智能指针的作用是管理一个指针,因为存在以下这种情况:申请的空间在函数结束时忘记释放,造成内存泄漏。使用智能指针可以很大程度上的避免这个问题,因为智能指针就是一个类,当超出了类的作用域是,类会自动调用析构函数,析构函数会自动释放资源。所以智能指针的作用原理就是在函数结束时自动释放内存空间,不需要手动释放内存空间。

8、简单实现cv::Mat()
9、给一个二值图,求出最大联通区域。

四、其他

1、牛顿法、GN、LM的区别
2、深度学习和SLAM的结合点
3、各种传感器的特点(单目、双目、RGBD、激光),单目SLAM的缺陷以及如何解决
4、简述激光SLAM中的ICP算法原理
5、如何解决SLAM环境中的动态对象的问题
6、激光和视觉传感器的联合标定。
7、对极几何及基础矩阵的求解
8、推导卡尔曼滤波,描述粒子滤波
9、简单介绍图优化
10、相机和陀螺仪之间的外参如何标定
11、SfM的原理和算法
12、BA的流程
13、视觉和激光的区别
14、如何求解Ax=b
15、相似变换、仿射变换、射影变换的区别
16、视差与深度的关系
17、闭环检测常用的方法
18、SVO、LSD中的深度滤波器原理
19、单应矩阵H的求取
20、RANSAC的框架
21、旋转矩阵的特征值和特征向量的物理意义
22、什么情况下无法计算本质矩阵E
八点法计算本质矩阵,是由八个匹配点的八个方程构成一个线性方程组,其系数矩阵是由特征点的位置决定的,如果系数矩阵是满秩的(即秩为 8),那么它的零空间维数为 1,也就是 e 构成一条线。这与 e 的尺度等价性是一致的。如果八对匹配点组成的矩阵满足秩为 8 的条件,那么 E 的各元素就可由上述方程解得。如果不满足满秩的条件,则无法计算本质矩阵。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值