超维空间S2无人机使用说明书——41、使用3维雷达进行室内定位——仿真篇(跑数据集)

本文介绍了S系列无人机采用的基于fast-lio定位算法,使用宇树雷达和JetsonNano开发,详细步骤包括启动定位算法、播放数据集、观察RVIZ和里程计信息。建议先在仿真环境下学习以确保配置正确和硬件安全。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言:为了提高无人机室内定位的稳定性和多种定位方案,S系列无人机推出了基于三维雷达激光点云数据的定位方案。该方案的提出是为了改善视觉定位容易受到光照等影响导致的位置漂移。

简介

定位采用fast-lio定位算法,通过修改源码直接发布定位出来的位置信息和速度等信息。该算法主要依赖CPU的运算速度,因此需要选择合适的主控进行开发即可。

硬件:宇树雷达4DLiDAR L1 PM,ROS主控Jetson orin nano 8G

环境:ubuntu20.04,ros-noetic

步骤一: 启动fast-lio定位算法

roslaunch fast_lio mapping_velodyne.launch

请添加图片描述

等待出现如下界面,表明启动成功

请添加图片描述

同时会自动开启RVIZ,如下

请添加图片描述

步骤二:播放数据集

注意:需要到对应数据集目录下再进行如下指令操作,我的数据集在home目录下

rosbag play demo01_velodyne.bag 

请添加图片描述

步骤三:查看RVIZ中的激光点云图

请添加图片描述

步骤四:查看定位出来的里程计信息

(1)、查看里程计话题名称
rostopic list 

话题/Odometry就是雷达定位出来的里程计话题

请添加图片描述

(2)、打印里程计数据
rostopic echo /Odometry

请添加图片描述

总结:一般来说仿真数据集正常运行,表明环境配置正常。在下一小节中,我们只需要给出正确的激光scan数据即可。

建议,在不熟悉算法的情况下,最好是先进行仿真,在熟悉了流程以后在进行实物的操作,既提高了学习效率,也可以避免硬件的损坏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

流浪者1015

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值