A Development of Inertial-2D LiDAR SLAM on Manifolds Towards AGV(IROS)
面向AGV的惯导-2D激光SLAM在流形上的发展
摘要:
近年来,利用惯性测量单元(IMU)与相机的多传感器融合实现视觉惯性导航(VIN)是同步定位与即时建图(SLAM)的一个热点,其精度高、成本低。与VIN不同的是,本文提出了一种用于自动引导车辆(AGV)的基于因子图的二维激光和IMU的传感器融合的SLAM框架。该工作使用预积分和李理论(李群、李代数)处理并与现有的二维激光雷达SLAM框架进行了比较。我们的第一个贡献是正式讨论和分析在融合IMU的情况下二维激光里程计。第二个贡献是提出了一种基于流形预积分理论的IMU和2D激光雷达融合管道。最后介绍如何使用管道实现。
I 介绍
最近发表了许多关于VIN的现有文献。与VIN不同的是,这项工作融合了一个外感受传感器- 2D激光雷达和本体感受传感器-惯性测量单元(IMU),在精度和计算成本上都有更好的SLAM被称为激光惯导SLAM (LIN)。本研究与另一种激光雷达slam框架[1]的不同之处在于,它使用了预积分IMU测量,并结合了流形上的2D激光雷达因子。SLAM框架的前端利用图论将IMU因子和激光雷达因子结合到二维刚体群SE(2)上。在SLAM框架的后端,最大后验概率(MAP)能够实时估计机器人的位置。我们将在GTSAM 4.0优化工具箱[4]和ROS中使用预集成IMU和激光雷达因子来实现我们的算法。
II 2D激光惯导SLAM(LIN)
A.相关工作与分析
首先,VIN近年来SLAM中最流行的话题。其次,2D激光SLAM是最具历史意义的研究,在学术界和工业界都取得了巨大的成就。第一种是基于ICP的方法展示了最成功的系列例如ICP,PL-ICP,PSM,NDT,RF2O以及最好
面向AGV的惯导-2D激光SLAM在流形上的发展
最新推荐文章于 2024-08-28 08:29:16 发布
本文提出了一种面向自动引导车辆(AGV)的2D激光雷达与IMU融合的SLAM框架,使用因子图、预积分和李理论,提高了定位精度并降低了计算成本。与传统的激光雷达SLAM相比,该框架结合了IMU的预积分测量,并在SE(2)二维刚体群上处理激光雷达因子。算法在前端构建地图,后端通过最大后验概率估计实时位置。
摘要由CSDN通过智能技术生成