Open3D(C++) GICP算法实现点云精配准

本文介绍了GICP算法的原理,它结合ICP与Point-to-plane ICP,利用协方差矩阵增强配准的鲁棒性。在点云配准中,GICP通过最小化配准误差来寻找最优刚性变换矩阵。文章详细阐述了算法流程,并提供了主要函数的说明,展示了原始点云和配准后的效果,最后分享了使用Open3D库的Python代码实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述
本文由CSDN点云侠原创,原文链接。博客长期更新,本文最近一次更新时间为:2023年7月30日。

一、算法原理

1、算法概述

  GICP 算法,其原理是将 ICP 算法和 Point-to-plane ICP 结合到概率框架模型上,基于此框架进行点云配准,通过协方差矩阵起到类似于权重的作用,消除某些不好的对应点在求解过程中的作用。GICP 比标准 ICP 适用范围更广,同时在特定条件下 GICP 算法退化成标准 ICP算法。同时若存在唯一解,则极小值点就是全局最优解,GICP 算法退化成标准 ICP算法。

这篇博客里边有对该算法原理的讲解:

### GICP算法的Python实现 GICP (Generalized Iterative Closest Point) 是一种用于三维点云数据的方法。该方法通过迭代优化过程最小化两个点集之间的距离,从而找到最佳变换矩阵。 对于在 Python 中实现 GICP 算法,通常会依赖于 PCL (Point Cloud Library),这是一个专门处理点云数据的强大库。然而,由于 PCL 的主要接口是 C++ 编写的,在 Python 上使用它可能需要额外安装 `pybind11` 或者直接利用已经封装好的 Python 库如 `open3d`[^2]。 下面是一个基于 Open3D 实现 GICP 的例子: ```python import open3d as o3d import numpy as np def draw_registration_result(source, target, transformation): source_temp = source.clone() target_temp = target.clone() source_temp.transform(transformation) # Create a visualizer object and add the point clouds to it. vis = o3d.visualization.Visualizer() vis.create_window() vis.add_geometry(source_temp) vis.add_geometry(target_temp) opt = vis.get_render_option() opt.show_coordinate_frame = True vis.run() vis.destroy_window() source = o3d.io.read_point_cloud("path_to_source.ply") target = o3d.io.read_point_cloud("path_to_target.ply") threshold = 0.02 trans_init = np.asarray([[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]]) reg_p2l = o3d.pipelines.registration.registration_generalized_icp( source, target, threshold, trans_init, o3d.pipelines.registration.TransformationEstimationForGeneralizedICP()) print(reg_p2l) draw_registration_result(source, target, reg_p2l.transformation) ``` 这段代码展示了如何加载源和目标点云文件,并执行广义 ICP 注册来计算两者间的转换关系。最后还提供了可视化函数以便查看注册效果[^3]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值