Open3D(C++) GICP算法实现点云精配准

195 篇文章 922 订阅 ¥19.90 ¥99.00
本文介绍了GICP算法的原理,它结合ICP与Point-to-plane ICP,利用协方差矩阵增强配准的鲁棒性。在点云配准中,GICP通过最小化配准误差来寻找最优刚性变换矩阵。文章详细阐述了算法流程,并提供了主要函数的说明,展示了原始点云和配准后的效果,最后分享了使用Open3D库的Python代码实现。
摘要由CSDN通过智能技术生成

在这里插入图片描述
本文由CSDN点云侠原创,原文链接。博客长期更新,本文最近一次更新时间为:2023年7月30日。

一、算法原理

1、算法概述

  GICP 算法,其原理是将 ICP 算法和 Point-to-plane ICP 结合到概率框架模型上,基于此框架进行点云配准,通过协方差矩阵起到类似于权重的作用,消除某些不好的对应点在求解过程中的作用。GICP 比标准 ICP 适用范围更广,同时在特定条件下 GICP 算法退化成标准 ICP算法。同时若存在唯一解,则极小值点就是全局最优解,GICP 算法退化成标准 ICP算法。

这篇博客里边有对该算法原理的讲解:

非常感谢您的提问,我将为您介绍一下Python中点云快速配准的方法及V-SLAM中点云配准算法改进的方法。 点云快速配准计算机视觉中非常重要的一个问题,它的目的是将不同位置、姿态、采样率、噪声等条件下的点云数据进行重叠、匹配,使其能够对应到同一坐标系下。点云配准技术在许多领域都有应用,如机器人导航、三维建模、虚拟现实等。 在Python中,我们可以使用开源库Open3D来进行点云快速配准Open3D提供了ICP(Iterative Closest Point)算法GICP(Generalized Iterative Closest Point)算法两种点云配准方法,其中ICP算法是一种经典的点云配准算法,而GICP算法则是ICP算法的一种改进,可以处理更大的点云数据集。 使用Open3D进行点云配准的流程如下: 1. 加载源点云和目标点云 ```python import open3d as o3d source = o3d.io.read_point_cloud("source.pcd") target = o3d.io.read_point_cloud("target.pcd") ``` 2. 对点云进行预处理,如下采样、滤波等操作 ```python source = source.voxel_down_sample(voxel_size=0.05) target = target.voxel_down_sample(voxel_size=0.05) source, _ = source.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) target, _ = target.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) ``` 3. 使用ICPGICP算法进行配准 ```python trans_init = np.identity(4) threshold = 0.02 reg_p2p = o3d.registration.registration_icp( source, target, threshold, trans_init, o3d.registration.TransformationEstimationPointToPoint()) reg_p2p.fitness, reg_p2p.inlier_rmse, reg_p2p.transformation ``` 其中,ICP算法使用`o3d.registration.TransformationEstimationPointToPoint()`作为变换估计方法,而GICP算法使用`o3d.registration.TransformationEstimationPointToPlane()`作为变换估计方法。 除了使用开源库进行点云配准外,还可以通过改进点云配准算法来提高配准效果。在V-SLAM中,点云配准是一个重要的环节,影响着相机位姿的估计和地图重建的质量。传统的点云配准算法在处理大规模点云数据时往往速度较慢,甚至无法处理,因此需要改进。 一种常见的改进方法是使用分布式点云配准算法,将点云数据分成多个子集,分别进行配准,最后将多个配准结果合并起来。这样可以提高计算效率,同时保持高度的配准质量。 另一种改进方法是使用基于深度学习的点云配准算法,如PointNetLK、Deep Closest Point等。这些算法使用神经网络模型来学习点云特征,并将特征向量用于点云匹配,相比传统的点云配准算法,这种方法具有更高的配准度和更快的计算速度。 以上是我为您介绍的Python中点云快速配准的方法及V-SLAM中点云配准算法改进的方法,希望对您有所帮助。如果您还有其他问题,请随时提问。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值