分数布朗运动的分数阶大规模中立型随机时滞系统的指数稳定性

分数布朗运动分数阶大规模中立型随机时滞系统的指数稳定性

Exponential Stability of Fractional Large-Scale Neutral Stochastic Delay Systems with Fractional Brownian Motion

这篇论文的标题是《Exponential Stability of Fractional Large-Scale Neutral Stochastic Delay Systems with Fractional Brownian Motion》,由 T. Sathiyaraj, T. Ambika 和 Ong Seng Huat 于2023年发表在《Journal of Risk and Financial Management》上。论文的主要内容和贡献可以总结如下:

研究背景与动机:

  • 数学在金融领域扮演重要角色,特别是在金融资产定价和风险管理中。
  • 分数布朗运动(fBm)和相关的随机系统因其长期记忆特性而被用于模拟股票价格和金融现象。

论文目标:

  • 提供具有分数阶大尺度中立随机延迟系统(NFSDS)的指数稳定性分析。
  • 这些系统考虑了分数阶微积分(FC)和分数布朗运动。

主要贡献:

  1. 在Rn随机设置中考虑非线性分数阶大尺度中立随机延迟系统(NFSDS)。
  2. 利用不动点定理和对非线性部分的局部假设来确定解的存在性和唯一性。
  3. 利用Hölder不等式和Gronwall不等式建立特定NFSDS的稳定性和指数稳定性。

研究方法:

  • 基于分数阶微积分(FC)、Rn随机空间和Banach不动点理论,导出了解的存在性和指数稳定性结果的充分条件。
  • 通过应用局部假设来处理考虑系统的非线性项。

理论结果:

  • 证明了在满足一定假设条件下,系统(1)至少有一个解,并且当满足特定条件时,系统(1)的平凡解是稳定的。
  • 证明了在满足一系列假设条件下,系统(1)是指数稳定的

数值模拟:

  • 提供了数值模拟来验证理论结果,展示了不同分数阶α值下系统的稳定性。

结论与未来研究方向:

  • 论文得出了分数阶随机金融建模中NFSDS的指数稳定性的有用和一般条件。
  • 作者表达了在未来的研究中考虑金融和股票价格模型以及随机保险费模型的指数稳定性的意向。

作者贡献与资金:

  • 论文中详细列出了每位作者的具体贡献。
  • 研究没有从任何公共、商业或非营利部门的资助机构获得特定资助。

致谢:

  • 作者感谢审稿人的深刻评论,这些评论极大地改进了论文。

利益冲突声明:

  • 作者声明没有利益冲突,资助者在研究设计、数据收集、分析或解释、手稿撰写或决定发布结果方面没有作用。

论文通过数学建模和理论分析,为理解和预测金融市场中的复杂动态提供了新的视角和工具,特别是在处理具有长期记忆特性的金融时间序列数据时。

T.Sathiyaraj 1,* t . Ambika 2和Ong Seng Huat 1,3

1马来西亚UCSI大学精算科学和数据分析研究所,吉隆坡56000

2印度Dindigul 624612雅各布纪念基督教学院计算机科学系

3马来西亚吉隆坡50603马来亚大学数学科学研究所

*通信:sathiyaraj133@gmail.com

摘要:数学在金融的许多领域都发挥着重要的作用。特别是,它提出了在所有金融领域广泛使用的理论和工具。此外,由于分数布朗运动(fBm)和相关随机系统的长记忆特性,人们用分数布朗运动来模拟股票价格和金融中的其他现象。本文给出了分数阶大规模中立型随机时滞系统的指数稳定性。基于分数阶微积分(FC)、Rn随机空间和Banach不动点理论,给出了解存在的充分条件和指数稳定性结果。在本研究中,我们通过应用局部假设来处理所考虑系统的非线性项。最后,为验证理论结果,进行了数值模拟。

关键词:资产定价动态风险;指数稳定性;金融建模和衍生工具;分数演算;分数布朗运动;大尺寸问题;长短期记忆中的模拟和计算;时延

引文:Sathiyaraj,t .,T. Ambika和Ong Seng Huat。2023.

分数布朗运动的分数阶大规模中立型随机时滞系统的指数稳定性。风险与财务管理杂志16: 278。https://doi.org/10.3390/jrfm16050278

学术编辑:Thanasis Stengos

已收:2023年1月31日

修订日期:2023年3月5日

接受:2023年5月17日

发表日期:2023年5月19日

版权所有:2023作者被许可人MDPI,巴塞尔,瑞士。本文是根据Creative Commons attribute(CC BY)许可证(https://creativecommons.org/licenses/by/ 4.0/)的条款和条件分发的开放存取文章。

  1. 介绍

数学、概率、统计和其他分析方法的知识对于开发金融中的方法和理论以及通过分析真实世界的经验数据来测试其有效性至关重要。例如,数学、概率和统计有助于开发金融资产(如股票、债券、货币和衍生证券)的定价模型,并根据决策者的偏好向他们提出财务上最佳的策略。布朗运动是描述股票市场随机波动的数学过程。它假设股票价格随机移动并遵循随机游走。这是一种随机过程,通常被视为对流体或气体中颗粒的运动进行建模。然而,布朗运动在金融学中被广泛地用来模拟股票价格随时间的随机游走。为了在股票市场建模中应用布朗运动,使用了价格运动的随机性,因为没有特定的趋势和方向。这种随机性随后被建模为一系列随机步骤,其中每个步骤代表股票价格的小变化。每一步的规模都由股票波动性决定,而股票波动性则是衡量股票价格随时间振荡的程度。布朗运动的一个重要特征是,它是一个连续的过程,意味着股票价格可以采取任何价值在一定范围内。这使得它对于建模股票价格随时间的行为很有用,因为它允许我们捕捉所有可能的结果。然而,尽管布朗运动可以成为理解股票价格行为的有用工具,但它并不是一个完美的模型。股价会受到一系列因素的影响,包括新闻事件、公司业绩和经济状况。这些因素会导致股价以布朗运动等简单模型难以捕捉到的方式波动。

最近,Hurst指数作为一种评估记忆效应的有用工具被引入,经常用自相关函数Hurst (1951)来衡量。(0 << 1)是代表赫斯特指数的常用方法。

    1. 当0 < H <0.5为时,时间序列表现出负相关和反持久性行为,或短依赖记忆。
    2. 当= 0.5时,时间序列是独立的。
    3. 当0.5 < H <1为时,时间序列表现出持续性行为,即长依赖记忆

分数阶导数的概念并不新鲜,而FC有长达三个世纪的悠久历史。在后几十年和20世纪中期,与FC相关的出版物数量显著增加。分数阶微分方程(FDEs)之所以备受关注,其中一个解释就是它可以用来定义一系列物理Hilfer (2000)、化学Oldham (2010)和生物Magin (2010)过程。分数阶导数在记忆和遗传过程中起着重要作用。由于记忆效应是金融系统中的一个显著特征,人们已经进行了几项研究来检验金融市场中的长记忆。FC作为应用数学的一个新分支,可以在各种应用中找到。莱布尼茨、卡普托、刘维尔、黎曼、欧拉和其他人被认为拥有大量与FC分析相关的基础数学理论。尽管如此,在过去的几十年中,人们在众多工程和科学学科中发现了越来越令人信服的表现形式(见Ortigueira (2011))。值得强调的是,最近的大部分研究都致力于FDEs的存在假设(见Balachandran等人(2012年);Nieto和Samet (2017年);Singh等人(2017年);田和涅托(2017))。

最近,Bhaskar和Biswajit (2023)研究了在俄罗斯-乌克兰冲突背景下,原油价格冲击的急剧飙升对七国集团(即加拿大、法国、德国、意大利、日本、英国和美国)股价回报和货币汇率的影响。回报动态与能源市场隐含波动性之间的经验关系中的制度转换已在Okawa (2023)中讨论。Sari等人(2023年)研究了具有相依索赔和随机保费的比例再保险和Stop-Loss再保险的最优组合。营运资本管理实践中的羊群行为趋势:Farooq等人(2023年)分析了巴基斯坦非金融部门的证据。中国特色国家资本主义下的风险投资公司成长:Yun等(2023)讨论了模糊集的定性比较分析。在Li等人(2014)中,作者建立了分数阶随机微分方程模型来描述金融定价中的趋势记忆效应。

进行分析时,必须考虑功能结构、环境噪声和时间延迟,这在构建进一步的潜在科学模型Mao (1997)时非常有价值。在Wu (2011)中研究了由空时白噪音驱动的随机分数阶偏微分方程的解的过程。分数阶和Hilfer分数阶动力系统的能控性已在Kumar等(2022a,2022b,2023)中得到研究。在Dassios (2022)中研究了奇异微分方程组与时滞系统之间的关系,以及分数阶拟线性多时滞脉冲积分微分系统的稳定性;Kalidass等人(2022年)。

另一种类型的噪声暴露是连续的。这可以使用Levy方法进行建模。特别是基于Poisson随机测度的方法,作为一种常见的非高斯随机方法,已经在各种领域得到了大量的关注,并且被用于预测供应链系统的需求何时会增加Song (2009)。在随机环境问题Seo和Lee (2011)、电话用户在无线链路服务区的分布模式Taheri等人(2010)以及Applebaum (2009)中对网络系统中的一个服务器m型随机排队进行了数学建模。在Rockner和Zhang (2007)中,解的存在性、唯一性和极大偏差原理跳

研究了类型随机演化方程。许多研究人员最近将FDEs作为描述各种稳定物理过程的有用工具。

然而,非线性FDE稳定理论的研究仍处于起步阶段,在这一领域开展更多的工作是可能的。最近,人们对FDEs的理论概念进行了深入的研究,得到了包括稳定性理论在内的几个基本发现。在数学术语中,稳定性理论关注的是在原始数据的微小变化下,微分方程解的收敛性。稳定性这一专题在研究FDEs时至关重要,许多作者都谈到了这一问题(见Ahmed等人(2007年);高、余(2005):Odibat (2010年);Wang等人(2012年)。无论如何,非线性FDEs比传统的整数阶微分方程更难分析稳定性。在过去的几十年中,许多作者被吸引到非线性FDE稳定性理论的研究中,结果,许多方法被创造出来。然而,需要强调的是,使用不动点定理研究FDEs的耐久性只进行了几个步骤。Burton和Zhang (2012)利用不动点定理开始深入研究微分方程的稳定性。随后,几位作者使用不动点方法建立了微分系统稳定的充分条件(见Ren等人(2017);Shen等人(2020年)。根据以上所述

讨论中,利用不动点方法考虑了阶为α(1,1)的FDEs的指数稳定性。可以设想,具有fBM的FDE对于建模将是重要的

股票价格和金融工具的混乱行为。FDEs的指数稳定性是金融系统分析和应用中的一个重要性质。

本文的主要贡献如下:

      1. 考虑了Rn随机环境下的非线性分数阶大规模中立型随机时滞系统(NFSDS)。
      2. 为了确定解的存在唯一性,利用了不动点定理和关于非线性部分的局部假设。
      3. 摘要:利用海尔德不等式和Gronwall不等式,建立了一类NFSDS的稳定性和指数稳定性.

下面的断言概述了本文的创新和挑战以及未来的方向:

  1. 在Rn随机环境中,NFSDS的稳定性和指数稳定性结果是新的。
  2. 研究该系统的指数稳定性并不容易,本文使用的术语是非线性随机和大规模中立型的模估计。
  3. 更难验证系统较弱的假设(1)。

以下是研究的概要:第二部分给出了模型描述和初步结论。我们的主要发现在第3节和第4节中得到了证明。最后,第五节对理论进行了说明,第六节得出了结论。

  1. 系统描述和准备工作

请考虑以下由给出的NFSDS

c Dαhxl(t)g l(t,xl(t),xl(t-h(t)))I = AAL XL(t)+f l(t,XL(t),XL(t-h(t)))

+t÷(s,x (s),x(s h÷(s)))dw(s)

+t÷(s,x (s),x(s h÷(s)))dwH,

xl(t) =ϕ(t,t∑[h,0],(1)

其中T∏0,T],1

< α˜

< 1,XL(t)↉rnl(l = 1至n),e ∑N

nl = n,A’l为nl × nl

2

连续矩阵值函数。定义Cn

l=1

C =(h,0),Rnl

),一个Banach空间的

由[h,0]→R ^ l映射的连续函数。定义[0,T] := J,进一步,g÷l:J×Cnl×。

Cnl→Rnl,f l:J×Cnl×Cnl→Rnl,σl:J×Cnl×Cnl→Rnl×nl,ξl:J×Cnl×Cnl→

Rnl ×nl是将在将来指定的连续函数。此外,w(Hs)是具有H∑(1,1)的fBm,H∑(1,1)由其随机表示定义

wH := 1∫0[(t s)H 1(s)H 1]dw(s)+* t(t s)H 1 dw(s)

(s)

2 2 2

γH+1 0

这里,γ表示γ函数γ(α):=∞yα1 exp(y)dy,而0 << 1被称为Hurst参数(对于自相似过程,可以看到与Hurst参数的联系)。

让我们考虑具有概率测度P和w(t) = (w1(t),w2(t)的概率空间(ω,F,P)。。。,wn(t))T是n维维纳过程,s定义在(ω,F,P)上。让

L2(ω,t,Rnl)表示Rnl中具有值的所有t-可测平方可积随机变量的Hilbert空间。让L2F (J,Rnl)是所有平方可积的Hilbert空间

具有Rnl值的ft-可测过程。设b = XL(t):XL(t)↉c(j,L2(ω,Ft,Rnl))是所有连续平方可积和ft-自适应过程的Banach空间,对于任何t ≥ 0,任何

考虑到

ϕ ∈ C

t∈ J

([h,0]

,Rnl)

表示连续函数映射的Banach空间

[ h,0]至Rnl。有关分数阶微积分定义、随机理论和fBm的更多详情,可以阅读我们发表的论文Balasubramaniam等人(2020年);Sathiyaraj和Balasubramaniam (2018年);Sathiyaraj等人(2019年)。

定义1。n = 1<α的黎曼-刘维尔分数算符(左侧)

fl : [0,∑)→R如下:

< n代表

x╱l

α˜ α˜ 1

0+ l Γ(α˜ ) l

0

α(fl)(x(l)= dn(in)α(fl)(x(l))。

定义2。podlubny(1998):n \ 1<α=<n = fl:[0,∑) r如下:

c Dαf

1 ∫

f n(s) d .

其拉普拉斯变换为

γ(n =α)0

(t s)αn+1

C α

α˜ n = 1 l

+α1 l

L{ Dt fl(t)}(s) = s

fl(s)↉f(0)s。

l=0

定义3。Podlubny (1998):米塔希-莱弗勒函数的双参数族由下式给出

z∨ZL

对于_ 0.

Eα,β(=∑γ,lα+β)

α β >

一般的米塔希-莱弗勒函数满足以下恒等式

∑e TTβ1E

α˜,β

(tα= z)dt = 1

1 z

f或|z| < 1。

双参数米塔希-莱弗勒函数α,β(z)的拉普拉斯变换用以下积分描述

∨e STβ1

aα╱d

sαβ。

0 t Eα,β( t)

t =(sα∓a)

α˜ −β

即L { tβ1Eα,β(在α)}(s)= s

引理1。克雷西格(1978):假设有界线性算子Al : Rnl → Rnl是在Banach空间上确定的。以艾尔为例 < 1.那么(I Al)1是线性且有界的,

(I Al)1 =∑Ai。然后,(I Al)1≤(1 Al)1。

引理2。毛(1997):让g∈l∈M2(J;Rd×m ) e

T

e 0 |σl(s)|

ds<∑。然后,E ∫ T

σl(s)dB(s)≤

p

2T p 22

2

T

|σl(s)| PDS

0

其中p ≥ 2。

引理3。阿普尔鲍姆(2009):对于任何p ≥ 2,存在Aˇ k > 0,这样

∫s∫+∫

ˇ (

”∫t∫+∫

p #

超级

s∏0,t]

0 −∞

g÷k(ν,z)N^ (dν,dz) ≤ Ak E

0 −∞

g k(s,z)

ζ(dz)ds

+ E ∫ t ∫ +

g k(s,z) p

κ(dz)ds。

0 −∞

定义4。具有0<h<1 on(ω,f,p)的归一化fbm wh = { w(ht):0üt<∑}由以下性质唯一地表征:

  • w(Ht)具有固定增量;
  • w(H0) = 0,t ≥ 0时Ew(Ht)= 0;
  • w(Ht)对于t > 0具有高斯分布。

从以上三个性质可以看出,对于0<süt,协方差函数由RH(s,t)= e wh = 1 nt2h+s2h | t s | 2h给出。

定义5。Seemab和Rehman (2018):如果对于每个e > 0和t0 ≥ 0,∃ δ = δ(t0,e) > 0 e |xl(t,xl0,t0)-ϕ(t)|<e对于| xl0 ϕ(t0)|üδ(t0,e)和所有t ≥ t0,则(1)的解xl(t) = ϕ(t被称为稳定。

定义6。如果∃为正,1üm∫e t≥0,则等式(1)被认为是指数稳定的,

e XL(t)2üM∫e t。

等式(1)的解可以解释如下
xl(t)= eα(aˇtα)hϕ(0)+gᶡl(0,ϕ(0))i+gᶡl(t,XL(t),XL(t h(t)))

+    (t s)α1Eα,α(Aˇl(t s)α)fˇl(s,xl(s),XL(s h(s)))ds
0
* ∫s

+    (t s)α1Eα,α(a l(t s)α)
0 0
t

σl(в),XL(в),XL(в)h(τ˜)))dw(τ˜)ds

+    (t s)α1Eα,α(a l(t s)α)a l g l(s,xl(s),XL(s h;(s))ds
0

* ∫s

+    (t s)α1Eα,α(a l(t s)α)
0 0

ds.

3.解的存在唯一性
在这一部分中,我们证明了解的存在唯一性和稳定性结果。
因此,我们建立了下面的假设:
(H1)为f÷l,σ÷l,g÷l∃q1(常数)和v÷(v),Vσ()和VG÷(∈LQ(j,R+) e

(i)E
(ii)E
(iii)E

f l(t,xl(t),XL(t h(t)))-f l(t,yl(t),yl(t h(t)))2üVF(t)E XL(t)-yl(t)2
σl(t,xl(t),XL(t h(t)))—σl(t,yl(t),yl(t h(t)))2üVσl(t)E XL(t)yl(t)2
g l(t,xl(t),XL(t h(t)))-g l(t,yl(t),yl(t h(t)))2üVG l(t)E XL(t)-yl(t)2。

t t
(iv)E∫ξl(ψ)、XL(ψ)、XL(ψH(ψ)))dw(Hв)╱ξl(ψ)、yl(ψ)、yl(ψH)(
≤2Ht2H 1∫s Vξ(t)E XL(t)yl(t)22 ds。
(H2)对于t ≥ 0、N1、N2 ≥ 1,下列性质为真
㈠    eα(a l tα)≤N1eωt。
㈡    Eα,α(Aˇl(t s)α)≤N2 eω(t s)。


(i)E
(ii)E

fl(t、xl(t)、XL(t-h(t)))
σl(t,xl(t),xl(t    h(t)))
˜

üVF÷l(1+E XL(t))
üv^σ˜l(1+e XL(t))

(iii)E

g l(t),xl(t),xl(t    h(t)))
t

üv^_˜l(1+e XL(t))。

(iv)e∫ξl(в),XL(в),XL(в)h(в)))dwH

2ü2Ht2H 1∫t Vξ(s)E1+XL(s)22 ds。

0
此外,我们设定

(τ˜)

0升

Q1 = 5vg l+10n 2
T2α1

1 eω

ˇ

p T α
2α˜ − 1    f╱l Lq(J,R+) +
2H 1 T2α


vσl Lq(J,R+)
#

+2α1 Al VG l Lq(J,R+) + 2Ht

α2Vξl Lq(J,R+)

Q    5V^

10N 1 e 2ωT!“T2α1 R

T2αR

T2α1

Rˇ。

2    2H 1 T2αR #。

在此,我们采用Rf˜ l

= sup E
t∈ J

f╱l(t,0,0) 2,Rσl    =    sup
t∈ J

σl(t,0,0) 2,Rg˜ l    =

sup
t∈ J

g÷l(t,0,0) 2,Rοl = sup E
t∈ J

οl(t,0,0) 2。


定理1。认为假设(H1)和(H2)都是真的;那么(1)具有至少一种解决方案,条件是


M2:4vg = l+4 N2

T2α1ˇ

1 eω

p T α
2α˜ − 1    f╱l Lq(J,R+) +
2H 1 T2α


vσl Lq(J,R+)
#

+2α1 Al VG l Lq(J,R+) +2Ht

α2Vξl Lq(J,R+)

 1, (2)


其中1 + 1 = 1,p,q  1和xl ≡ 0(平凡解)在b中是稳定的。

证据。对于每个r ≥ 0,定义Br = { XL(t):XL(t)↉B;e XL(t)2ür }然后对于每个r,
Br是b的有界闭凸子集,定义了算子φ:Br→Br
(φXL)(t)= eα(aˇtα)hϕ(0)+gᶡl(0,ϕ(0))i+gᶡl(t,xl(t),XL(t-h(t)))

+    (t s)α1Eα,α(Aˇl(t s)α)fˇl(s,xl(s),XL(s h(s)))ds
0
* ∫s

+    (t s)α1Eα,α(a l(t s)α)
0 0
t

σl(в),XL(в),XL(в)h(τ˜)))dw(τ˜)ds

+    (t s)α1Eα,α(a l(t s)α)a l g l(s,xl(s),XL(s h;(s))ds
0
* ∫s

+    (t s)α1Eα,α(a l(t s)α)
0 0

ds.

步骤I:证明∃r≥0eφ(br)⊆br。基于(H1)、(H2)和霍尔德不平等,


(t s)α1Eα,α(a l(t s)α)f l(s,xl(s),XL(s h(s))ds)


T2α1

∑2ω(t s)


˜ ˜ ˜ 2

≤ 2α˜    1 N2    e
0

E fl(s,xl(s),XL(s h(s)))-fl(s,0,0) + fl(s,0,0) ds

T2α1

(∫t ∫)

≤ 22α˜ −

1 N2

E 2ω(t s)VF;(s)E XL(s)2ds+
0 0

E-2ω(t-s)E

f︰l(s,0,0) 2ds

2˜−1

(t

!1 t!1 t)

T α
≤ 22α˜ −

1 N2


p
e 2ω(t s)ds
0

Vq(s)ds
l
0


q
E xl 2 + Rf
0

e 2ω(t s)ds

2˜−1

(    2p T!一

    2 T!)

T α
≤22α1 N2

1 eω


p
VF l Lq(J,R+)R+RF l

1 eω。


同样,

∫s 2

(t s)α1Eα,α(a l(t s)α)
0

σl(в),XL(в),XL(в)h(τ˜)))dw(τ˜)ds

T2α

(1 e

t!一

1 e

−2ω

t!)

≤2α2 N2


vσl Lq(J,R+)R+Rσl


2ω ,

2


(t s)α1Eα,α(a l(t s)α)a l g l(s,xl(s),XL(s h;(s))ds


2˜−1

(    2p T!一

    2 T!)

≤22α;1 N2Al

∫s

VG l Lq(J,R+)R+rg l    2ω

2


(t s)α1Eα,α(a l(t s)α)
0

ds

2    1 T2α

(1 e

t!一

1 e

−2ω

t!)

现在,

4Ht H

α2 N2

vξl Lq(J,R+)R+Rξl 2ω

e(φXL)(t)2ü5(eeα(aˇtα)[ϕ(0)+gˇl(0,ϕ(0))] 2 + E

g l(t,xl(t),XL(t h(t)))2



+ E    (t s)α1Eα,α(a l(t s)α)f l(s,xl(s),XL(s h(s))ds)

+e∑(t s)αф1eαф,αф(aˇl(t s)αф)∫σфl(в),XL(в),XL(в)-h(τ˜)))dw(τ˜)ds
+E∑(t s)α1Eα,α(A l(t s)α)A l g l(s,xl(s),XL(s h;(s))ds

+e∑(t-s)αф1eαф,αф(aˇl(t-s)αф)∫οl(в),XL(в),XL(в),hф(в)))dw(hф)ds
( 0    0    

                    

2˜−1

"    2p T!1 2˜−1

    2 T!#

T α
+22α1 N2

1 eω


p T α
2α1 r+RF l

1 eω

T2α

“1e

t!一

1 e

−2ω

t!#

+2α2 N2

vσl Lq(J,R+)R+Rσl    2ω

2˜−1

"    2p T!一

    2 T!#

+22α;1 N2Al
2 ˜



2p

VG l Lq(J,R+)R+rg l
t!一
    


2 T!))

(    2p T!一
            

“T2α1

T2α1ˇ。

2α1 VF l Lq(J,R+)
2H 1 T2α

vσl Lq(J,R+)2α1 Al VG l Lq(J,R+)1
)#)

^    1 e 2ωT!“T2α1    T2α

T2α1ˇ

2H 1 T2α    #


ü5n1e 2ωte ϕ(0)+g l(0,ϕ(0)2+Q2+q1r = r。

对于,r = 5 n1 e 2ωt e ϕ(0)+g˜l(0,ϕ(0)2+Q2,q

 1.因此,我们得到了φ(b)⊆b


对于这样的

一个r。

(1 Q1)1r r

第二步。证明了φ是一个收缩。
假设xl,yl ∈ Br。利用(H1)、(H2)和霍尔德不等式,对于每个t ∈ J,我们得到
e(φXL)(t)(φyl)(t)2
= e(eα(aˇtα)[ϕ(0)+g l(0,ϕ(0))]+g l(s,xl(s),XL(s-h;(s)))

+    (t s)α1Eα,α(Aˇl(t s)α)fˇl(s,xl(s),XL(s h(s)))ds
0
* ∫s

+    (t s)α1Eα,α(a l(t s)α)
0 0
t

σl(в),XL(в),XL(в)h(τ˜)))dw(τ˜)ds

+    (t s)α1Eα,α(a l(t s)α)a l g l(s,xl(s),XL(s h;(s))ds
0
* ∫s

+(t s)α1Eα,α(a l(t s)α)
0 0

ds

—eα(a l tα)[ϕ(0)+g l(0,ϕ(0))]—g l(s,yl(s),yl(s-h(s)))
t
—    (t s)α1Eα,α(Aˇl(t s)α)fˇl(s,yl(s),yl(s-h(s)))ds
0
* ∫s

—    (t s)α1Eα,α(a l(t s)α)
0 0
t

σl(в),yl(в),yl(в)h(τ˜)))dw(τ˜)ds

—    (t s)α1Eα,α(Aˇl(t s)α)Aˇl g l(s,yl(s),yl(s h(s))ds)
0

这表明

α2Vξl Lq(J,R+)

e XL(t)yl(t),

e(φXL)(t)(φyl)(t)2üM2E XL yl 2。

利用(2),我们得出M2 < 1,其暗示了φ是具有唯一不动点xl(t) r的压缩映射,其是(1)的解。现在,我们证明了(1)的稳定性条件

对于任何给定的ε > 0,∃λ=ε(1 Q1)Q2 e ϕ(0)+g l(0,ϕ(0))2üλ,这意味着

E xl(t) 2

ü5N1e 2ωT

e ϕ(0)+g l(0,ϕ(0)2

+ 10N2

1 eω

p T α

2α˜ −

1 Vf˜ l

Lq (J,R+)

T2α1

2H 1 T2α #)

+ vσl Lq(J,R+)2α1 Al VG l Lq(J,R+)2Ht

α2Vξl Lq(J,R+) r

1 e 2ωT!“T2α1 T2α T2α1ˇ

2H 1 T2α #

+ 10N2 2ω

2α1 RF l+

α2 Rσl+2α1 Al rg l+2Ht

α2 Rξl

≤5N1e 2ωtλ+Q1r+Q2 r(1 Q1)≤5N1e 2ωtλ+Q2

rüe。

这样,证明就结束了。

  1. 指数稳定性

定理2。如果假设(H2)和(H3)成立,则(1)是指数稳定的,前提是

“T2α1 ^ ˇ

T2α

^

2h 1 T2α^ #

ω > β = N2

2α˜ − 1

证据。

VF l+alvg l

(1 + r) +

α2Vσl(1+r)+2Ht

α2Vξl(1+r)

。(3)

2 2ωt

2 2ωt”T2α1

^·^一世

T2α

+α2 v^σ˜l(1+r)+2ht

T2α

α˜2 οl(+)

# * t e

2ωsds

E 2e2ωt

5N东

 0

˜ 0, 0

 2

5N”T2α1 1

r hV^

V^一世

T2α

+α2 v^σ˜l(1+r)+2ht

T2α

α˜2 οl(+)

# * t e

2ωs

ds。

我们利用Gronwall不等式得到了这个结果

2ωte XL(t)2ü5n1e ϕ(0)+g l(0,ϕ(0)2

" ^ ˇ

T2α

^

2h 1 T2α^ # !

因此,

e XL(t)2üme ϕ(0)+g l(0,ϕ(0)2 exp((—vt))。

其中v = 2ω 5β,M = 5N1。因此,根据(3),(1)是指数稳定的。这样,证明就结束了。

备注1。摘要:具有无限时滞和Poisson跳跃的二阶中立型随机发展方程的温和解的存在性、唯一性和稳定性,作者在Ren和sakshivel(2012)中使用了逐次逼近技术.解的唯一性和存在性,在

除了它们的可控性(相对)之外,在Sathiyaraj和Balasubramaniam (2016)中使用不动点方法已经证明了这一点。在Wang等人(2017)中,作者研究了具有由矩阵(置换)确定的线性部分的微分时滞半线性系统的能控性。本文利用非线性项的较弱条件,提出了有限维空间中稳定结果的一个新的实概念。

  1. 数值模拟

考虑由描述的NFSDS的系统

c D _

[xl1(t)—(t+2)e t

xl2(t)

x(t)]=(x)(t)(t)

— t

t

sxl1(s)σl1dB1+

0

t

3s XL 1(s)ξL1 db1h (4)

0

c D÷0.6

[xl2(t)2(t)xl2(t)e t

xl3(t)

]=(x)(t)(t)

— t

t

sxl2(s)σl2dB2+

0

t

5sxl 2(s)ξl2db 2h (5)

0

对于t ∈ J1 = [0,1]和0.5<α∈<1。让我们看看take 

a =

0.1 0

0 −0.1

,f (t,x (t),x(t h(t))=

xl2(t)

1(t,

˜ , , − ˜

txl1(t)σl1dB1,ˇ

, − ˜

(2t)xl1(t)e t,

σl (t xl(t) xl(t

h(t))=

txl2(t)σl2dB2

gl(t xl(t) xl(t

h(t))=

(2t)xl2(t)e t

ξl(t,xl(t),XL(t h(t)))= 3t XL 1(t)ξL1 db1h,其中,h˜ = 0.01,σl1 = 0.3,σl2 = 0.5和

α˜ = 0.6.

此外,很容易验证对于任何xl(t),yl(t)↉R2。

  1. E
  2. E

  3. E
  4. E

f l(t,xk(t),XL(t h(t)))-f l(t,yl(t),yl(t h(t)))2≤(3t)E XL(t)yl(t)2

σl(t,xl(t),XL(t h(t))))σl(t,yl(t),yl(t h(t)))2≤0.5t E XL(t)yl(t)2

g l(t,xl(t),XL(t h(t)))-g l(t,yl(t),yl(t h(t)))2≤(2t)E XL(t)yl(t)2

οl(t,xl(t),XL(t h(t)))—οl(t,yl(t),yl(t h(t)))2ü4tE XL(t)yl(t)2。

因此,f÷l,σ÷l和g÷l满足假设(H1),其中我们设置了V÷(()、V∑()、VG÷(ln)÷Lq(J1,R+)。

因此,定理1的所有条件都被满足。因此,分数阶系统对于J2是稳定的。图1和2显示了“α”的各种值的相关稳定性结果。

分数阶a =0.6

0.3

0.25

0.2

0.15

0.1

0.05

0

−0.05

0 10 20 30 40 50 60 70 80 90 100

t/秒

图1。系统(4)–(5)在α= 0.6时稳定。

分数阶a=0.9

0.3

0.25

0.2

0.15

0.1

0.05

0

−0.05

0 10 20 30 40 50 60 70 80 90 100

t/秒

参考

图2。系统(4)–(5)在α= 0.9时稳定。

这里,系统(4)–(5)的延迟响应是针对各种值α= 0.6、0.9计算的,并且延迟发生在t = 2。此外,非线性函数f÷l,σ÷l和g÷l是连续的,并满足假设(H1),然后利用定理1,系统(4)–(5),它们在[0,100]上是稳定的。

  1. 结论及未来研究

本文给出了具有fBm的NFSDS指数稳定的一些有用的一般条件。证明了不动点的存在性和唯一性,以及NFSDS的稳定性分析。最后,通过数值模拟验证了理论结果。基于分数阶随机金融模型的应用,考虑了具有金融和股票价格模型的分数阶随机时滞系统的指数稳定性以及随机保费模型在不久的将来的最优控制,作者有兴趣建立该模型。

作者贡献:概念化,O.S.H .方法论,T.S .软件,T.A .确认,O.S.H .形式分析,T.S .调查,T.S .和T.A .资源,O.S.H .及T.S .数据管理,T.S .书面——初稿准备,T.S .写作—审阅及编辑,O.S.H .可视化,T.S .监管,O.S.H .项目管理,T.S .资助收购、O.S.H .和T.S .所有作者均已阅读并同意该手稿的已发表版本。

资金:本研究没有从公共、商业或非盈利部门的任何资金机构获得任何特定赠款。

机构审查委员会声明:不适用。

知情同意声明:不适用。

数据可用性声明:不适用。

致谢:作者感谢评论者的深刻评论,大大改进了论文。

利益冲突:作者声明不存在利益冲突。供资方在研究的设计中没有任何作用;收集、分析或解释数据;在手稿的写作中;或决定公布结果。

Ahmed,e .,A. M. A. El-Sayed和Hala a . a . a . El-萨卡人。2007.分数阶捕食与狂犬模型的平衡点、稳定性及数值解。数学分析与应用杂志325:542–53。[CrossRef]

阿普尔鲍姆,大卫。2009.列维过程和随机演算。剑桥:剑桥大学出版社。

巴拉查德兰、克里希南、Jayakumar Kokila和Juan J. Trujillo。2012.具有多个控制时滞的分数阶动力系统的相对能控性。《计算机与数学应用》64:3037–45。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值