论文略读 ST-MoE: Designing Stableand Transferable Sparse Expert Models

(ST-MOE是针对encoder-decoder结构的,对于LLM时代的decoder only,这些实验的结论是否依旧生效,这是一个问题【不一定对】)

1  背景

1.1 稀疏模型的训练稳定性

  • 稀疏模型通常会受到训练不稳定性的影响,比稠密模型稳定性差

1.2 Transformer结构的改进 对于 稳定性的影响

1.2.1 GELU和RMSNorm

LayerNorm换RMSNorm

  •   "Fraction Stable" 表示在实验中成功稳定运行的比例
    • 去掉 GEGLU 层,或者是 RMSNorm都会提升训练的稳定性,但是会很大程度地影响模型的质量

1.2.2 输入抖动 & Dropout

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值