机器人学导论 二、正运动学,MDH法

前言

本篇学习机械臂的正运动学,MDH法。

关节与连杆

关节joint,连杆link,是机械臂的基本组成结构。

关节包括转动关节和移动关节,一般仅有一个自由度。

一个关节把相邻两连杆连接,n个关节把n+1个连杆连接起来,具有n个自由度。

编号

把固定基座作为第0个连杆,机械臂末端的连杆作为第n个连杆。

连杆参数

连杆的描述

两个相邻关节轴之间的公垂线的长度,称为连杆的长度。

两个相邻关节轴之间形成的角度,称为连杆的转角。
在这里插入图片描述
上图中,连杆i-1的长度是其近端关节轴i-1与远端关节轴i之间的公垂线长度 a i − 1 a_{i-1} ai1

连杆i-1的转角是其近端关节轴i-1与远端关节轴i形成的角度 α i − 1 \alpha_{i-1} αi1,至于角度的正负号,可以根据后面建立坐标系时再确定。

连杆连接的描述

两个相邻连杆之间的距离,称为连杆偏距。

两个相邻连杆绕公共关节轴旋转的夹角,称为关节角。

在这里插入图片描述
上图中,关节i是连杆i-1和连杆i的公共关节。

由于实际的连杆是弯曲的,可以将公垂线段 a i − 1 a_{i-1} ai1 a i a_i ai 看作代替曲连杆的直连杆i-1,i

直连杆i-1,i之间的距离是关节i的连杆偏距 d i d_i di

直连杆i-1沿关节轴i旋转到直连杆i的角度是关节角 θ i \theta_i θi

关节变量

一个连杆可以使用上面的连杆长度、连杆转角、连杆偏距、关节角四个参数确定。

对于转动关节,关节角可变,另三个参数不变。

对于移动关节,连杆偏距可变,另三个参数不变。

可变的参数称为关节变量。

连杆坐标系

连杆坐标系用于描述相邻连杆之间的相对位置关系。

连杆坐标系编号与连杆编号相同,称为 { i } \{i\} { i}

中间连杆坐标系建立

为连杆i建立坐标系:

以关节轴i作为Z轴,以连杆iZ轴的交点作为原点,以连杆i作为X轴指向关节轴i+1,以右手定则确定Y轴

例外:如果连杆i的长度 a i = 0 a_i=0 ai=0(此时连杆i,i+1Z轴相交),以交点作为原点,以两个Z轴所在平面的垂线作为X轴,方向可以有两种选择,而 α i \alpha_i αi的符号就由X轴方向决定。

每个坐标轴的建立都要满足右手定则。
在这里插入图片描述
上图中,可以按这个顺序来建立坐标系:

首先找到所有的关节轴i-1,i

然后确定坐标系 { i − 1 } \{i-1\} { i1},以关节轴作为 Z ^ i − 1 \hat Z_{i-1} Z^i1,直连杆i-1作为 X ^ i − 1 \hat X_{i-1} X^i1,再右手定则确定 Y ^ i − 1 \hat Y_{i-1} Y^i1

然后确定坐标系 { i } \{i\} { i}

首尾连杆坐标系建立

对于首尾连杆0,n,有特殊的建系方法。

首坐标系

坐标系 { 0 } \{0\} { 0}在基座上,一般作为参考系。

第一个关节变量为0时,规定坐标系 { 0 } \{0\} { 0} { 1 } \{1\} { 1}重合。

当第一个关节为转动关节, d 1 = 0 d_1=0 d1=0;第一个关节为移动关节, θ 1 = 0 \theta_1=0 θ1=0

尾坐标系

坐标系 { n } \{n\} { n}的原点和x轴方向可以任意选取,但要尽量使得连杆参数为0。

连杆参数与连杆坐标系

按照上面的建系方法,可以把连杆参数重新定义:

  • a i a_i ai连杆长度:沿 X ^ i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值