李群与李代数
主要目标:
- 理解李群与李代数的概念,掌握SO(3),SE(3)与对应的李代数的表示方式。
- 理解BCH近似的意义。
- 学会在李代数上的扰动模型。
- 使用Sophus对李代数进行运算。
上个博客学习的主要是三维世界中刚体运动的描述方式,包括旋转矩阵、旋转向量、欧拉角、四元数等突感种方式。我们重点介绍了旋转的表示,,但是在SLAM这个系统中,我们还要对他们进行估计和优化。
现在呢,SLAM中相机位姿是未知的,所以我们可能需要解决"什么样的相机位姿最符合当前的观测数据"这样的问题。一种方式是把它构建成一个优化问题,求最优解的R和t,使得误差最小化。
之前说过,旋转矩阵自身带有约束(正交且行列式为1),。他们作为优化变量时,会引入额外的约束,使优化变得额外困难。通过李群——李代数之间的转换关系,我们希望把位姿估计变成无约束的优化问题,简化求解方式。
4.1 李群与李代数基础
旋转矩阵和变换矩阵地定义还记得么?三维旋转矩阵构成了 特殊正交矩阵SO(3),而变换矩阵构成了 特殊欧式群 SE(3)。
写起来如下:
当时并未详解 群 的含义。 变换矩阵或者旋转矩阵对加法不封闭。 换句话说,对于任意两个旋转矩阵,按照矩阵加法的定义,和不再是一个旋转矩阵:可以
这两种矩阵没有良好定义的加法,或者通常的矩阵加法对这两个集合不封闭。
相对地,他们只有一种较好的运算:乘法。SO(3)、SE(3)关于乘法是封闭的:
4.1.1 群
4.1.2 李代数的引出
可以这么理解:R随时间不断变化,但是始终满足正交这个要求。
对于上面那个等式。是始终成立的,我们可以两边对时间求导:
上面的操作是求导加移项外加提括号转置。
我们观察一下,反对称矩阵,它转置加负号等于它本身。下面是根据反对称矩阵得出的等式:
上面红框中,是t固定时。这里需要好好理解下上面的泰勒展开。上面让我们看清楚谁反应了导数性质。
4.1.3 李代数的定义
封双自雅??
4.1.4 李代数 so(3)
4.2 指数与对数映射
4.2.1 SO(3)上的指数映射
又看到罗德里格斯了,还记得怎么推导罗德里格斯么????
复习罗德里格斯!!!
记住:旋转矩阵的倒数可以由旋转向量指定,指导着如何在旋转矩阵中进行微积分运算。
4.2.2 SE(3)上的指数映射
推导的过程主要是泰勒展开 余弦和正弦 (凑出这两个的泰勒展开,然后替换)
4.3 李代数求导与扰动模型
前面我们了解和推导了下如何从李代数到李群。如何把李群到李代数呢?同样还要依靠泰勒展开:
简单看下:
好吧,继续这一节的主题吧。
4.3.1 BCH公式与近似形式
使用李代数的一大动机是优化,而在优化过程中,导数是非常重要的信息(后面非线性优化会说明这一点)。
我们上面虽然推导了李群与李代数的关系。
BCH公式与近似形式都弄完了,也理解了。
4.3.2 SO(3) 上的李代数求导
下面来讨论一个带有李代数的函数,以及关于李代数的求导问题。
构建了一个最小二乘问题。
搞清楚这段话在说什么。
4.3.3 李代数求导
看懂框中的操作。
4.3.4 扰动模型
4.3.5 SE(3)上的李代数求导
4.4 实践:Sopuhs库的应用
#include <iostream>
#include <cmath>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include "sophus/se3.hpp"
using namespace std;
using namespace Eigen;
// 本程序演示sophus的基本用法
int main(int argc,char **argv){
//沿z轴转90度的旋转矩阵
Martix3d R = AngleAxisd(M_PI/2,Vector3d(0,0,1)).toRotationMatrix();
//或四元数
Quaterniond q(R);
Sophus::SO3d SO3_R(R); //Sophus::SO3d可以直接从旋转矩阵构造
Sophus::SO3d SO3_q(q); //也可以通过四元数构造
//二者是等价的
cout<<"SO3 from matricx:\n"<<SO3_R.matrix()<<endl;
cout<<"SO3 from quaternion:\n"<<SO3_q.matrix()<<endl;
//使用对数映射获得它的李代数
Vertor3d so3 = SO3_R.log();
cout<<"so3 = "<<so3.transpose()<<endl;
//hat为向量到反对称矩阵
cout<<"so3 hat=\n"<<Sopuhs::SO3d::hat(so3)<<endl;
//相对地,vee为反对称矩阵到向量
cout<<"so3 hat vee= "<<Sophus::SO3d::vee(Sophus::SO3d::hat(so3)).transpose()<<endl;
//增量扰动模型的更新
Vector3d update_so3(1e-4,0,0); //假设更新量为这么多
Sophus::SO3d SO3_updated = Sophus::SO3d::exp(update_so3)*SO3_R;
cout<<"SO3 updated = \n"<<SO3_updated.matrix()<<endl;
cout<<"*****************************"<<endl;
//对SE3操作大同小异
Vector3d t(1,0,0); //沿X轴平移1
Sophus::SE3d SE3_Rt(R,t); //从R、t构造SE(3)
Sophus::SE3d SE3_qt(q,t); //从q、t构造SE(3)
cout<<"SE3 from R,t= \n"<<SE3_Rt.matrix()<<endl;
cout<<"SE3 from q,t= \n"<<SE3_qt.matrix()<<endl;
//李代数se(3)是一个六维向量,方便起见先typedef一下
typedef Eigen::Matrix<double,6,1> Vector6d;
Vector6d se3 = SE3_Rt.log();
cout<<"se3 = "<<se3.transpose()<<endl;
//观察输出,会发现在Sophus中,se(3)的平移在前,旋转在后
//同样的,有hat和vee两个运算符
cout<<"se3 hat = \n"<<Sophus::SE3d::hat(se3)<<endl;
cout<<"se3 hat vee = "<<Sophus::SE3d::vee(Sophus::SE3d::hat(se3)).transpose()<<endl;
//最后,演示更新
Vector6d update_se3; //更新量
update_se3.setZero();
update_se3(0,0) = 1e-4d;
Sophus::SE3 SE3_updated = Sophus::SE3d::exp(updated_se3)*SE3_RT;
cout<<"SE3 updated = "<<endl<<SE3_updated.matrix()<<endl;
return 0;
}
4.4.2 例子:评估轨迹的误差
代码:
#include <iostream>
#include <fstream>
#include <unistd.h>
#include <pangolin/pangolin.h>
#include <sophus/se3.h>
using namespace Sophus;
using namespace std;
string groundtruth_file = "./example/groundtruth.txt";
string estimated_file = "./example/estimated.txt";
typedef vector<Sophus::SE3d, Eigen::aligned_allocator<Sophus::SE3d>> TrajectoryType;
void DrawTrajectory(const TrajectoryType >, const TrajectoryType &esti);
TrajectoryType ReadTrajectory(const string &path);
int main(int argc, char **argv) {
TrajectoryType groundtruth = ReadTrajectory(groundtruth_file);
TrajectoryType estimated = ReadTrajectory(estimated_file);
assert(!groundtruth.empty() && !estimated.empty());
assert(groundtruth.size() == estimated.size());
// compute rmse
double rmse = 0;
for (size_t i = 0; i < estimated.size(); i++) {
Sophus::SE3d p1 = estimated[i], p2 = groundtruth[i];
double error = (p2.inverse() * p1).log().norm();
rmse += error * error;
}
rmse = rmse / double(estimated.size());
rmse = sqrt(rmse);
cout << "RMSE = " << rmse << endl;
DrawTrajectory(groundtruth, estimated);
return 0;
}
TrajectoryType ReadTrajectory(const string &path) {
ifstream fin(path);
TrajectoryType trajectory;
if (!fin) {
cerr << "trajectory " << path << " not found." << endl;
return trajectory;
}
while (!fin.eof()) {
double time, tx, ty, tz, qx, qy, qz, qw;
fin >> time >> tx >> ty >> tz >> qx >> qy >> qz >> qw;
Sophus::SE3d p1(Eigen::Quaterniond(qx, qy, qz, qw), Eigen::Vector3d(tx, ty, tz));
trajectory.push_back(p1);
}
return trajectory;
}
void DrawTrajectory(const TrajectoryType >, const TrajectoryType &esti) {
// create pangolin window and plot the trajectory
pangolin::CreateWindowAndBind("Trajectory Viewer", 1024, 768);
glEnable(GL_DEPTH_TEST);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
pangolin::OpenGlRenderState s_cam(
pangolin::ProjectionMatrix(1024, 768, 500, 500, 512, 389, 0.1, 1000),
pangolin::ModelViewLookAt(0, -0.1, -1.8, 0, 0, 0, 0.0, -1.0, 0.0)
);
pangolin::View &d_cam = pangolin::CreateDisplay()
.SetBounds(0.0, 1.0, pangolin::Attach::Pix(175), 1.0, -1024.0f / 768.0f)
.SetHandler(new pangolin::Handler3D(s_cam));
while (pangolin::ShouldQuit() == false) {
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
d_cam.Activate(s_cam);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
glLineWidth(2);
for (size_t i = 0; i < gt.size() - 1; i++) {
glColor3f(0.0f, 0.0f, 1.0f); // blue for ground truth
glBegin(GL_LINES);
auto p1 = gt[i], p2 = gt[i + 1];
glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
glEnd();
}
for (size_t i = 0; i < esti.size() - 1; i++) {
glColor3f(1.0f, 0.0f, 0.0f); // red for estimated
glBegin(GL_LINES);
auto p1 = esti[i], p2 = esti[i + 1];
glVertex3d(p1.translation()[0], p1.translation()[1], p1.translation()[2]);
glVertex3d(p2.translation()[0], p2.translation()[1], p2.translation()[2]);
glEnd();
}
pangolin::FinishFrame();
usleep(5000); // sleep 5 ms
}
}
求误差那里李代数进行了norm()操作,是求二范数操作。因为这里的李代数是向量。
向量的一范数,二范数。回忆一下。
4.5 相似变换与李代数
单目视觉中经常使用相似变换群Sim(3),以及对应的李代数sim(3)。
单目的尺度不确定性我们已经讨论过了。
验证构成群,这在课后题中有考察。。
我之前主要手推了指数映射(从李代数到李群)。对数映射是从李群到李代数,也需要泰勒展开。
课后习题:
上面的推导,仔细思考下,需要参照前面欧式群。
接下来好好准备学习雅可比矩阵海信矩阵吧。