目录
3.3 使用Mask R-CNN和多视角几何对动态内容进行分割
1.论文摘要解读
1.1 原论文内容
场景刚性的假设是SLAM算法中的典型。这样一个强有力的假设限制了大多数视觉SLAM系统在人口密集的真实世界环境中的应用,而这些环境是一些相关应用的目标,如服务机器人或自动驾驶汽车。
在本文中,我们提出了DynaSLAM,一个视觉SLAM系统,在ORBSLAM2的基础上,增加了动态物体检测和背景绘画的能力。DynaSLAM在单目、双目和RGB-D配置的动态场景中是ROBUST的。我们能够通过多视角几何学、深度学习或两者兼而有之的方式检测移动物体。有了静态的场景地图
DynaSLAM是一种视觉SLAM系统,它在ORBSLAM2基础上增强了动态物体检测和背景修复能力,适用于高动态场景。通过Mask R-CNN和多视角几何,系统能有效分割动态内容,防止动态物体干扰建图,并对被遮挡背景进行恢复。实验证明,DynaSLAM在高动态环境下表现优于标准SLAM算法,且能生成静态场景地图。
订阅专栏 解锁全文
1526

被折叠的 条评论
为什么被折叠?



