目录
1.3 LIDAR INERTIAL ODOMETRY VIAS MOOTHING AND MAPPING
1.3.2 IMU Preintegration Factor
1 论文解读
1.1 摘要部分
We propose a framework for tightly-coupled lidar inertial odometry via smoothing and mapping(通过GTSAM优化库), LIO-SAM, that achieves highly accurate, real-time mobile robot trajectory estimation and map-building. LIO-SAM formulates lidar-inertial odometry atop a factor graph, allowing a multitude of relative and absolute measurements, including loop closures, to be incorporated from different sources as factors into the system. The estimated motion from inertial measurement unit (IMU) pre-integration de-skews point clouds and produces an initial guess for lidar odometry