多传感器融合SLAM --- 7.LIO-SAM论文解读(紧耦合的激光雷达惯性SLAM)

LIO-SAM是一种通过GTSAM实现的紧密耦合激光雷达惯性测距框架,提供高度准确、实时的轨迹估计和地图构建。该框架基于因子图,融合多种传感器数据,包括激光雷达、IMU、GPS,通过IMU预积分、激光雷达测距、GPS因子和闭环检测进行优化。通过局部扫描匹配和关键帧选择,提高系统实时性能。文章详述了LIO-SAM的工作原理和主要贡献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 论文解读

1.1 摘要部分

1.2 Introduction

1.3  LIDAR INERTIAL ODOMETRY VIAS MOOTHING AND MAPPING

1.3.1 System Overview

1.3.2 IMU Preintegration Factor

1.3.3 Lidar Odometry Factor

1.3.4 GPS Factor

1.3.5 Loop Factor

2.LIO-SAM整体框架

3.LIO-SAM安装

4 LIO-SAM跑数据集的一些注意事项


1 论文解读

1.1 摘要部分

        We propose a framework for tightly-coupled lidar inertial odometry via smoothing and mapping(通过GTSAM优化库), LIO-SAM, that achieves highly accurate, real-time mobile robot trajectory estimation and map-building. LIO-SAM formulates lidar-inertial odometry atop a factor graph, allowing a multitude of relative and absolute measurements, including loop closures, to be incorporated from different sources as factors into the system. The estimated motion from inertial measurement unit (IMU) pre-integration de-skews point clouds and produces an initial guess for lidar odometry

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

APS2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值