2024年的YOLO系列回顾:YOLOv9、YOLOv10、YOLO11

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统
27.【基于YOLOv8深度学习的人脸面部表情识别系统28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统
29.【基于YOLOv8深度学习的智能肺炎诊断系统30.【基于YOLOv8深度学习的葡萄簇目标检测系统
31.【基于YOLOv8深度学习的100种中草药智能识别系统32.【基于YOLOv8深度学习的102种花卉智能识别系统
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统42.【基于YOLOv8深度学习的无人机视角地面物体检测系统
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统44.【基于YOLOv8深度学习的野外火焰烟雾检测系统
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统48.【基于深度学习的车辆检测追踪与流量计数系统
49.【基于深度学习的行人检测追踪与双向流量计数系统50.【基于深度学习的反光衣检测与预警系统
51.【基于深度学习的危险区域人员闯入检测与报警系统52.【基于深度学习的高密度人脸智能检测与统计系统
53.【基于深度学习的CT扫描图像肾结石智能检测系统54.【基于深度学习的水果智能检测系统
55.【基于深度学习的水果质量好坏智能检测系统56.【基于深度学习的蔬菜目标检测与识别系统
57.【基于深度学习的非机动车驾驶员头盔检测系统58.【太基于深度学习的阳能电池板检测与分析系统
59.【基于深度学习的工业螺栓螺母检测60.【基于深度学习的金属焊缝缺陷检测系统
61.【基于深度学习的链条缺陷检测与识别系统62.【基于深度学习的交通信号灯检测识别
63.【基于深度学习的草莓成熟度检测与识别系统64.【基于深度学习的水下海生物检测识别系统
65.【基于深度学习的道路交通事故检测识别系统66.【基于深度学习的安检X光危险品检测与识别系统
67.【基于深度学习的农作物类别检测与识别系统68.【基于深度学习的危险驾驶行为检测识别系统
69.【基于深度学习的维修工具检测识别系统70.【基于深度学习的维修工具检测识别系统
71.【基于深度学习的建筑墙面损伤检测系统72.【基于深度学习的煤矿传送带异物检测系统
73.【基于深度学习的老鼠智能检测系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

引言

随着2024年接近尾声,Ultralytics的计算机视觉工程师Muhammad Rizwan Munawar也表明,YOLOv11将是2024年的最后一个YOLO模型版本。

本文将回顾整个2024年YOLO系列模型的更新情况:包括YOLOv9,v10,v11这3个版本。

2024年2月-YOLOv9

这是2024年首次发布的YOLO新版本模型。YOLOv 9由台湾团队开发,是Ultralytics对YOLOv 8的重大升级。他们在图像模型中引入了新的格式:可编程梯度信息(PGI)和广义高效层聚合网络(GELAN)。
在这里插入图片描述

这个模型无论是推理速度还是推理准确率,都有一定的提升。
更棒的是,他们甚至提供了一个图像分割模型!
YOLOv 9在目标检测和图像分割方面取得了巨大的进步!
YOLOv 9为2024年剩下的时间里的YOLO模型奠定了基础!

2024年5月-YOLOv10

紧接着YOLOv9,清华大学的研究人员直接在Ultralytics库上开发了YOLOv10版本。

YOLOv10在速度延迟方面看到了许多亮点,但在准确性方面没有那么多,在框架中删除了NMS层。

在这里插入图片描述

除此之外,YOLOv10并没有太多的精度增益。然而,这是加速模型检测速度的一大步,并为YOLOv11奠定了基础。

YOLOv10的另一个大缺陷是它只提供图像对象检测而不提供分割。

2024年10月-YOLOv11

这一新版本发布并不令人惊讶。许多人猜测,当Ultralytics宣布YOLO Vision Event时,将发布新模型。然而,包括我在内的许多人都没有想到会有这么多的模型被刷新。

img

YOLOv 11图像对象检测本身并没有太大的改进,而且非常小。然而,YOLOv11带来了图像分割,姿势,OBB和分类之间的刷新!这些统计数据与YOLOv8相比也有很大的改进。


在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

### YOLO 不同版本的性能比较 #### YOLO v3 性能特点 YOLO v3 使用 Darknet-53 作为骨干网络,在 COCO APIoU=0.5——PASCAL VOC 的 mAP 表现上,显示出较高的速度和准确率[^1]。这种改进不仅提升了检测精度,还保持了实时处理能力。 ```python import torch from models import Yolov3Model model_v3 = Yolov3Model(pretrained=True) ``` #### YOLO v4 性能提升 相较于 YOLO v3,YOLO v4 进一步优化了模型结构与训练策略,引入了更多的增强技术如 CSPDarknet53 骨干网、SPP 模块以及 PANet 特征金字塔融合方法等。这些改动使得 YOLO v4 在多个数据集上的表现优于前代产品,并且能够在 GPU 上实现更快更准的目标检测效果[^4]。 ```python from yolov4.models.experimental import attempt_load model_v4 = attempt_load('yolov4.pt', map_location=torch.device('cpu')) ``` #### YOLO v5 综合优势 YOLO v5 是基于 PyTorch 实现的一个轻量级目标检测框架,它继承和发展自 YOLO 系列的优点。通过对锚框机制、损失函数等方面的调整,加上自动超参数搜索的支持,YOLO v5 达到了更好的平衡点,在资源消耗较小的情况下提供了出色的检测效率和准确性。特别是在小物体识别方面有所加强[^2]。 ```python !git clone https://github.com/ultralytics/yolov5.git %cd yolov5/ from models.common import DetectMultiBackend model_v5 = DetectMultiBackend(weights='yolov5s.pt') ``` 综上所述,随着版本迭代更新,YOLO 家族不断进步,从 v3 到 v5 各个版本都在追求更高的检测质量和更低的时间延迟之间寻找最佳解决方案。具体到实际应用场景时,则需考虑硬件条件和个人需求来选择最适合自己的版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值