【YOLOv8多模态融合改进】| CVPR2024 LGAG:大核分组注意力门模块,3×3分组卷积与注意力协同的特征精准融合

一、本文介绍

本文记录的是利用LGAG模块改进 YOLOv8 的特征融合部分

LGAG(Large-kernel Grouped Attention Gate)通过3×3分组卷积与注意力机制结合引导解码器处理特征与跳接特征的精准融合。本文利用LGAG模块,通过3×3分组卷积扩大感受野以捕捉更广泛局部空间上下文,同时结合注意力机制生成自适应注意力系数,对YOLOv8中关键目标特征赋予高激活值、抑制冗余背景特征在特征融合阶段实现全局语义与局部细节的高效结合,减少计算成本的同时提升特征表达能力,增强模型对复杂场景下目标的检测精度与效率。


专栏目录:《多模态模型改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用

专栏地址:YOLO系列模型的多模态融合改进——极易上手、非常好发文的多模态改进教程!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值