一、本文介绍
本文记录的是利用LGAG模块改进 YOLOv8 的特征融合部分。
LGAG(Large-kernel Grouped Attention Gate)通过3×3分组卷积与注意力机制结合,引导解码器处理特征与跳接特征的精准融合。本文利用LGAG模块,通过3×3分组卷积扩大感受野以捕捉更广泛局部空间上下文,同时结合注意力机制生成自适应注意力系数,对YOLOv8中关键目标特征赋予高激活值、抑制冗余背景特征,在特征融合阶段实现全局语义与局部细节的高效结合,减少计算成本的同时提升特征表达能力,增强模型对复杂场景下目标的检测精度与效率。
专栏目录:《多模态模型改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用
专栏地址:YOLO系列模型的多模态融合改进——极易上手、非常好发文的多模态改进教程!