前言
以前隐隐约约就记得二阶行列式为面积,却一直忘了怎么来的了。现在重新翻看证明,并且纠正一个小错误,即二阶行列式的绝对值为面积,而不是二阶行列式为面积。我们下面就要证明这个结论。

比如上图,两个向量,他们围成一个平行四边形,其面积就是行列式的绝对值。

证明

这个很好理解,就算你不知道外积(叉乘)也没有关系,因为上述等式太好理解了,平行四边形的面积就是底乘以高嘛。上面a的模长可以看作底,b的模长乘以
s
i
n
θ
sin\theta
sinθ其实就是高。

然后我们就推导得到上述知识。a的模长的平方就是坐标的平方和,继续推导如下:

上面最后一步是啥?就是差平方嘛!

证毕。
完结撒花