(完全解决)为什么二阶行列式的绝对值为面积

本文探讨了二阶行列式与平行四边形面积之间的联系,通过直观的几何解释和数学推导,证明了二阶行列式的绝对值等于由两个向量构成的平行四边形的面积。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

以前隐隐约约就记得二阶行列式为面积,却一直忘了怎么来的了。现在重新翻看证明,并且纠正一个小错误,即二阶行列式的绝对值为面积,而不是二阶行列式为面积。我们下面就要证明这个结论。
在这里插入图片描述
比如上图,两个向量,他们围成一个平行四边形,其面积就是行列式的绝对值。

在这里插入图片描述

证明

在这里插入图片描述
这个很好理解,就算你不知道外积(叉乘)也没有关系,因为上述等式太好理解了,平行四边形的面积就是底乘以高嘛。上面a的模长可以看作底,b的模长乘以 s i n θ sin\theta sinθ其实就是高。

在这里插入图片描述
然后我们就推导得到上述知识。a的模长的平方就是坐标的平方和,继续推导如下:
在这里插入图片描述
上面最后一步是啥?就是差平方嘛!
在这里插入图片描述
证毕。


完结撒花

<think>嗯,用户想了解矩阵行列式数学意义,包括定义和作用。首先,我需要回忆一下行列式的基本概念。行列式是一个标量值,可以从方阵中计算出来。它的定义可能涉及到排列、逆序数,或者几何意义上的体积变化。不过用户可能更希望直观的理解,而不是太抽象的数学公式。 根据引用[3]提到的,线性代数的抽象在于寻找相同点和规律。行列式可能反映了矩阵作为线性变换的某种特性。比如,行列式绝对值可能代表变换后区域的体积变化比例,符号则可能指示方向是否改变。这部分需要确认是否正确,并找到合适的例子来说明。 然后,行列式的作用。在线性代数中,行列式可以判断矩阵是否可逆,当行列式不为零时矩阵可逆,这也是引用[2]中提到的逆矩阵存在条件。另外,行列式在求解线性方程组(克拉默法则)、计算特征值等方面也有应用。需要结合这些应用场景来解释,同时确保引用的正确性。 用户提供的引用中,引用[1]提到了线性方程组的紧凑表示,这可能和行列式在解方程组中的应用有关。引用[2]中的分块矩阵逆矩阵的公式,可能和行列式的分块计算有关联,不过这部分可能需要更深入的分析。 要注意用中文回答,结构清晰,分点说明定义和作用。同时需要生成相关问题,可能涉及行列式的计算方法、几何意义,或者与其他概念如矩阵秩的关系。最后,确保所有数学表达式用正确的LaTeX格式,行内用$...$,独立公式用$$...$$,并正确引用来源。</think>### 矩阵行列式数学意义 #### 1. 行列式的定义 行列式(Determinant)是方阵的一个标量值,记为$|A|$或$\det(A)$。其数学定义基于排列和逆序数: $$ \det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} $$ 其中$S_n$是$n$阶排列群,$\text{sgn}(\sigma)$是排列的符号(奇排列为$-1$,偶排列为$1$)。例如,二阶行列式的计算为: $$ \det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc $$ **几何意义**:行列式绝对值表示矩阵对应线性变换后空间的体积缩放比例,符号表示方向是否反转[^3]。例如,二维变换中,行列式平行四边形面积的缩放因子。 #### 2. 行列式的作用 - **可逆性判断**:矩阵$A$可逆当且仅当$\det(A) \neq 0$,这与引用[2]中分块矩阵求逆的条件一致[^2]。 - **线性方程组解的结构**:克拉默法则用行列式表示方程组的解,例如: $$ x_i = \frac{\det(A_i)}{\det(A)} $$ 其中$A_i$是替换第$i$列为常数项后的矩阵[^1]。 - **特征值计算**:特征多项式$\det(A - \lambda I) = 0$的根即为特征值。 - **体积计算**:在几何中,$n$维平行六面体的体积是相关向量构成矩阵行列式绝对值。 #### 3. 实例说明 对于矩阵$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$,其行列式为: $$ \det(A) = 2 \times 3 - 1 \times 1 = 5 $$ 这说明对应的线性变换将单位面积放大5倍,且方向未改变。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值