对于多模态融合(即3D点云数据和2D图像的融合)如何将点云数据标注到图像上,从而实现利用多传感器之间的互补特性可以增强感知能力、减少花销。
相机和激光雷达存在互补。单目相机无法感知3D几何信息;双目相机可以提供3D几何信息,但是计算量大,且容易受到遮挡、纹理缺失影响。另外,基于视觉的感知容易受到光照影响。LiDAR可以提供精准的3D几何信息,对环境光不敏感。但是分辨率低,帧率低,易受恶劣天气(雨雾雪)影响,且激光雷达比较昂贵。
第一步:在App中选择Lidar Camera Calibrator,点击图中的Import后选择Import Data
第二部:继续向弹出来的窗口添加文件,依次选择导入图像和点云数据如下后点击“确定”:
Square size就表示的是标定板(棋盘格)的大小
Matlab会自动导入数据并计算相机内参,然后开始进行相机和点云数据的处理,并进行自动标定,但自动标定结果一般较差,会提示没有探测到目标,这都是正常现象。
需要进行手动调整后就能精确标定。点击“确定”后调整过程如下。首先选择Edit ROI,也就是划定一个棋盘格(标定板)的范围,不用太大,能将所有采样的标定板包含在内就行,如图所示。
也有可能需要调整Dimension Tolerance或者Select Checkerboard,调整完之后点击“Apply”然后等一会点击“detect”即可
然后点击“标定”(Calibrate)即可。
得到标定结果如下:能看出标定板上覆盖了蓝色的点云,点云数据中也赋上了图片中的颜色,包括地砖的颜色,左下角为每幅图标定的标定误差,中间为像素误差,右边为重建误差。然后点击“导出”Export导出标定参数。
接着点击export导出, 这里的T就是外参矩阵
可以在这个网站将矩阵导入,然后就可以看出相机和雷达之间的欧拉角等信息。https://www.andre-gaschler.com/rotationconverter/如下: