seurat读取txt 单个文件 Seurat包之导入单细胞数据方式汇总 seuart读取单细胞 seuart读取geo单细胞

https://cloud.tencent.com/developer/article/1607200

挖掘公共单细胞数据集时,会遇到常见各种单细胞测序数据格式。现总结如下,方便自己日后调用,以创建Seurat对象
(1)barcodes.tsv.gz、features.tsv.gz、matrix.mtx.gz
(2)表达矩阵
(3)h5 (4)h5ad

格式一:barcodes.tsv.gz、features.tsv.gz、matrix.mtx.gz【☆】
这是cellranger上游比对分析产生的3个文件,分别代表细胞标签(barcode)、基因ID(feature)、表达数据(matrix)
一般先使用read10X()对这三个文件进行整合,得到行为基因、列为细胞的表达矩阵(为稀疏矩阵dgCMatrix格式,节约内存);然后再配合CreateSeuratObject()函数创建Seurat对象
示例数据集:GSE166635,创建代码如下----

在这里插入图片描述

dir="./data/HCC2/filtered_feature_bc_matrix/"
list.files(dir)
#[1] "barcodes.tsv.gz" "features.tsv.gz" "matrix.mtx.gz" 

counts <- Read10X(data.dir = dir)
class(counts)
#[1] "dgCMatrix"
#attr(,"package")
#[1] "Matrix"

scRNA <- CreateSeuratObject(counts = counts)
scRNA
#An object of class Seurat 
#33694 features across 9112 samples within 1 assay 
#Active assay: RNA (33694 features, 0 variable features)
如上Read10X()函数接受的参数为目录名,该目录包含了所需的三个配套文件;值得注意的是三个文件名只能分别是barcodes.tsv.gz、features.tsv.gz、matrix.mtx.gz,然后read10X函数可以自动加载。如上截图那样就是需要修改的~

作者:小贝学生信
链接:https://www.jianshu.com/p/5b26d7bc37b7
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

格式二:直接提供表达矩阵 这种是最方便的,直接创建Seurat即可 示例数据:GSE144320

scRNA <- CreateSeuratObject(counts = counts)
scRNA

读取txt


library(data.table)
rawcount=read.table("./GSE116481_all_samples_raw_counts_matrix.txt")
head(rawcount)[,1:10]
library(tibble)
colnames(rawcount)=rawcount[1,]  
rawcount=rawcount[-1,]
 rownames(rawcount)=rawcount[,1]
 rawcount=rawcount[,-1]

head(rawcount)[,1:10]
dim(rawcount)

在这里插入图片描述

### 单细胞数据集资源 对于单细胞研究而言,存在多种公开可用的数据集。这些数据集涵盖了不同的生物样本和疾病状态,为研究人员提供了丰富的资源用于分析和建模。 #### 1. Gene Expression Omnibus (GEO) NCBI维护的Gene Expression Omnibus是一个广泛使用的公共功能基因组数据存储库,其中含了大量经过处理过的单细胞RNA测序(scRNA-seq)数据集[^2]。用户可以通过访问该网站并利用其高级搜索工具找到感兴趣的单细胞项目。 #### 2. EMBL-EBI ArrayExpress ArrayExpress是由欧洲分子生物学实验室下属的EMBL-EBI提供的数据库服务之一,它同样收录了许多高质量的scRNA-seq实验记录及其关联的结果文件。此平台允许科学家们提交自己的研究成果同时也方便其他科研工作者获取所需资料进行二次开发或验证假设。 #### 3. Human Cell Atlas (HCA) Human Cell Atlas是一项国际合作计划,致力于绘制人体内所有类型的细胞图谱。该项目不仅收集了大量的原始读取数据,还进行了深入的计算处理工作以生成标准化后的表达量表格形式供下载使用。此外,HCA团队也积极促进了社区间的交流互动和技术共享活动。 ```python import pandas as pd url = "https://www.ebi.ac.uk/gxa/sc/experiments" df = pd.read_html(url)[0] print(df.head()) ``` 上述Python代码片段展示了如何从EMBL-EBI的一个页面抓取有关单细胞实验列表的信息表头作为例子说明编程方式获取在线资源的方法之一;实际操作时应遵循各站点API指南及版权规定。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值