✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
无人机(Unmanned Aerial Vehicle, UAV)凭借其灵活性和多功能性,已广泛应用于各个领域,例如航拍摄影、快递递送、环境监测以及军事侦察等。 然而,无人机的自主飞行离不开精准的飞行动力学模型以及高效的控制算法。本文将深入探讨无人机的飞行动力学建模,并阐述利用Simulink平台实现无人机姿态和轨迹控制的方法。
一、无人机飞行动力学模型
无人机的飞行动力学模型是一个高度非线性、多变量的复杂系统。其动力学特性受到诸多因素的影响,包括机体结构参数、空气动力特性、推进系统特性以及环境因素等。为了简化建模过程,通常采用简化的动力学模型,例如四旋翼无人机的动力学模型,其基于牛顿-欧拉方程建立。
首先,需要定义无人机的坐标系。通常采用三个坐标系:地球坐标系(E系)、机体坐标系(B系)以及惯性坐标系(I系)。E系固定于地面,I系与E系重合,但其原点位于无人机质心。B系固定于无人机机体,其原点也位于无人机质心。
然后,根据牛顿第二定律,可以建立无人机在三个方向上的运动方程:
以上方程中,外力𝐹F主要包括重力、推力以及空气动力;外力矩𝑀M主要包括由电机产生的力矩以及空气动力矩。 需要根据具体无人机模型,对这些力和力矩进行精确建模。例如,推力通常与电机转速的平方成正比,空气动力则需要考虑空气密度、速度以及机翼形状等因素。
为了便于在Simulink中实现,通常将上述非线性动力学方程进行线性化处理,得到小扰动模型。线性化处理将复杂的非线性系统简化为线性系统,方便进行控制器的设计与分析。 线性化过程通常在平衡点附近进行,需要根据具体的飞行状态选择合适的平衡点。
二、无人机控制策略与Simulink实现
无人机的控制目标通常包括姿态控制和轨迹控制。姿态控制的目标是使无人机保持或达到期望的姿态角(滚转角、俯仰角、偏航角);轨迹控制的目标是使无人机沿着期望的轨迹飞行。
常见的控制策略包括PID控制、LQR控制以及非线性控制等。
-
PID控制: PID控制是一种经典的反馈控制策略,其简单易懂,应用广泛。在Simulink中,可以直接使用PID控制器模块实现。PID控制器的参数需要根据实际情况进行调节,以获得最佳的控制效果。
-
LQR控制: LQR(Linear Quadratic Regulator)控制是一种最优控制策略,其通过求解Riccati方程,得到最优的控制增益。LQR控制能够在满足系统稳定性的前提下,最小化系统的代价函数。在Simulink中,可以使用LQR控制器模块,或者通过编写自定义模块实现。
-
非线性控制: 由于无人机系统的高度非线性特性,非线性控制策略能够更好地处理系统的非线性特性,实现更精准的控制。常见的非线性控制策略包括反步法、滑模控制等。 Simulink提供了丰富的模块,可以方便地实现各种非线性控制算法。
在Simulink中实现无人机控制,需要建立无人机的动力学模型,然后根据选择的控制策略设计控制器。 Simulink提供了丰富的模块库,例如积分器、求解器、控制器模块以及信号处理模块等,可以方便地构建无人机控制系统。 为了进行仿真验证,还需要添加传感器模块模拟实际的传感器数据,例如陀螺仪、加速度计以及GPS等。 通过仿真,可以分析控制器的性能,并对控制参数进行调整,最终实现对无人机的精确控制。
三、总结与展望
本文详细介绍了无人机的飞行动力学建模以及利用Simulink平台实现无人机姿态和轨迹控制的方法。 Simulink平台为无人机控制系统的设计、仿真和验证提供了强大的工具。 然而,实际应用中,无人机的控制系统还需要考虑各种复杂的因素,例如风扰动、传感器噪声以及系统故障等。 未来的研究方向可以关注更加鲁棒的控制算法、更精确的动力学模型以及更有效的控制策略,以提高无人机的自主飞行能力和可靠性。 此外,深度学习等人工智能技术也为无人机控制提供了新的思路和方法,值得进一步探索。
📣 部分代码
function drawSpacecraftBody(uu)
scale = 20;
% process inputs to function
pn = uu(1)*scale; % inertial North position
pe = uu(2)*scale; % inertial East position
pd = uu(3)*scale; % inertial Down position
phi = uu(4); % roll angle
theta = uu(5); % pitch angle
psi = uu(6); % yaw angle
t = uu(7); % time
% define persistent variables
persistent aircraftOrigin;
if t==0
figure(1); clf;
aircraftOrigin = drawBody(pn, pe, pd, phi, theta, psi, []);
title('Box')
xlabel('East')
ylabel('North')
zlabel('-Down')
view(32,47) % set the view angle for figure
axis([-100*scale,100*scale,-100*scale,100*scale,-100*scale, 100*scale]);
grid on
% at every other time step, redraw box
else
drawBody(pn, pe, pd, phi, theta, psi, aircraftOrigin);
end
end
function handle = drawBody(pn, pe, pd, phi, theta, psi, handle)
% define points on spacecraft in local NED coordinates
NED = spacecraftPoints;
% rotate spacecraft by phi, theta, psi
NED = rotate(NED, phi, theta,psi);
% transle spacecraft to [pn, pe, pd];
NED = translate(NED, pn, pe, pd);
% transform vertices form NED to XYZ
R = [...
0, 1, 0;...
1, 0, 0;...
0, 0, -1];
XYZ = R*NED;
% plot spacecraft
if isempty(handle)
handle = plot3(XYZ(1,:), XYZ(2,:), XYZ(3,:));
else
set(handle, 'XData', XYZ(1,:),'YData', XYZ(2,:),'ZData', XYZ(3,:));
drawnow
end
end
function XYZ = rotate(XYZ, phi, theta, psi)
% define rotaion matrix
R_roll = [...
1, 0, 0;...
0, cos(phi), -sin(phi);...
0, sin(phi), cos(phi)];
R_pitch = [...
cos(theta), 0, sin(theta);...
0, 1, 0;...
-sin(theta), 0, cos(theta)];
R_yaw = [...
cos(psi), -sin(psi), 0;...
sin(psi), cos(psi), 0;...
0, 0, 1];
R = R_roll*R_pitch*R_yaw;
% rotate vertice
XYZ = R*XYZ;
end
function XYZ = translate(XYZ, pn, pe, pd)
XYZ = XYZ + repmat([pn;pe;pd], 1, size(XYZ,2));
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇