个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
从零构建企业级多智能体系统:LangGraph 全流程实战 + 部署指南(含代码与架构图)
✨ 摘要
在大模型应用爆发的今天,如何构建一个可协作、可调试、可部署的多智能体系统?LangGraph 正在成为工程师的新宠。本文从原理剖析、流程建模、代码实战到前后端部署,手把手带你用 LangGraph 构建一个企业级 AI 助理系统,整合财务分析、法务审阅、报告生成与图表可视化等 Agent 模块,全面打通从用户输入到报告输出的全链路闭环。适合有工程思维的 AI 架构师、Agent 研发人员、以及大模型项目实践者。
🧭 目录
📌 点击跳转各章节,快速定位内容:
- 一、LangGraph 是什么?为什么说它重新定义了 Agent 编排
- 二、核心原理解析:图结构 + 状态驱动,才是智能体的最佳形式
- 三、实战项目:打造一个企业级多角色 Agent 系统(含工具链)
- 四、部署实战:如何将 LangGraph 系统跑在本地或线上?
- 五、AutoGen vs LangGraph:哪个才适合生产环境?
- 六、最佳实践建议 + 常见问题汇总
- 七、总结:为什么 LangGraph 是 Agent 工程落地的必经之路
一、LangGraph 是什么?为什么说它重新定义了 Agent 编排
在大模型的应用开发中,我们越来越发现一件事:
单个模型 ≠ 有用的产品,真正复杂的智能体系统,需要 任务分解、角色分工、状态管理和异常回滚。
LangChain 虽然为我们提供了丰富的工具封装和链式调用接口,但当面对以下场景时,它开始显得力不从心:
- 多个 Agent 之间需要协同、顺序执行、互相等待
- 工具调用需要在特定状态下才触发
- 用户输入的状态可能随时间演变,甚至中断后要恢复执行
这时候,LangGraph 作为 LangChain 的“下一代协作框架”应运而生。
1.1 LangGraph 的定位:面向工程场景的智能体系统框架
LangGraph 是由 LangChain 团队在 2024 年底正式推出的开源框架。它不是用来替代 LangChain,而是专为以下问题而生的:
场景 | LangChain(传统链式编排) | LangGraph(图结构执行) |
---|---|---|
多 Agent 协同 | 不擅长 | 原生支持 |
任务状态转移 | 需手动编码判断 | 自动推理状态流转 |
调试和回滚 | 无状态追踪 | 可记录每一步状态并回滚 |
工程级部署 | 需配合自建组件 | 内置缓存 / 跳转 / 容错 |
简而言之:LangGraph 是一套专为「大模型系统化开发」而设计的状态驱动执行框架,适用于多 Agent 协作、复杂任务控制、流程回滚、状态追踪等场景。
1.2 它和 AutoGen、LangChain、CrewAI 有什么区别?
我们简单对比几个主流框架:
框架 | 特点 | 适用场景 |
---|---|---|
LangChain | 工具封装丰富、链式执行灵活 | 简单 QA / RAG / 单轮任务 |
AutoGen | Chat 交互驱动、多智能体协作,但流程不可控 | 实验性强、适合原型开发 |
CrewAI | 角色驱动、支持 Task 分发 | Agent 执行流程固定、分层明确 |
LangGraph | 图结构建模、有状态执行、支持回滚 | 复杂任务流程、状态跳转、生产系统 |
从控制力、可追踪性和工程落地角度出发,LangGraph 是目前最接近工业级 Agent 系统的解决方案。
1.3 LangGraph 能做什么?
你可以用 LangGraph 构建:
- ✅ 多角色协同系统(如:法务+财务+报告助理)
- ✅ 复杂流程自动化系统(如:审批流程、招聘流程)
- ✅ 状态驱动的智能体系统(如:客服机器人,处理多轮异常)
- ✅ Agent × 工具链混合调用系统(如:检索+分析+报告输出)
这些应用都有一个共同点:不是一问一答能解决的,而是多轮、多状态、需要控制流程的复杂系统。
1.4 总结:为什么说 LangGraph 重新定义了智能体编排?
如果说 LangChain 是“数据流”的大脑(chain-of-thought),AutoGen 是“社交型智能体”的沙盒,那么 LangGraph 就是可控、可调试、可部署的智能体系统操作系统。
- 它让我们能像画流程图一样,定义智能体之间的协作结构
- 它让我们能像设计状态机一样,控制每个步骤的输入输出与状态跳转
- 它让我们终于可以把“智能体编排”变成一门工程学科,而不只是 prompt 玩具
在接下来的章节中,我们将深入它的执行原理,并手把手构建一个支持工具调用、Agent 协作、状态追踪的企业级系统。
二、核心原理解析:图结构 + 状态驱动,才是智能体的最佳形式
在 LangChain 或 AutoGen 时代,我们往往是这样设计一个智能体系统的:
response = agent.run(input)
一行代码封装了整个任务流程——听起来很方便,但也是黑盒的开始。
- 我们看不到 Agent 的决策链条
- 无法在任务失败后恢复
- 更难让多个 Agent 协同工作
LangGraph 提出的新范式是:用图(Graph)来组织任务流程,用状态(State)来描述执行上下文。
这一变化,让智能体从「调用模型」进化为「控制任务」。
2.1 核心结构一览:状态驱动有向图(Stateful Directed Graph)
LangGraph 的执行流程,完全由“节点(Node) + 边(Edge) + 状态(State)”组成。
它的逻辑模型如下图所示:
[输入状态]
↓
[Agent A 节点] ----> 条件判断 --> [Agent B 节点]
↓ ↓
[工具调用节点] [任务完成输出]
换句话说:
- 每个节点(Node)封装一个 Agent 或工具的调用逻辑
- 每条边(Edge)控制任务流转逻