个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
🧠 量化模型不用 GPU 也能跑得快?一文实测 INT8 CPU-only 推理表现
低成本部署场景下的性能极限挑战
✨ 摘要
当 GPU 成本高涨、推理场景轻量化趋势日益增强时,“在 CPU-only 环境下部署 INT8 量化模型” 成为一项极具现实价值的技术路径:
- 服务器端:轻负载业务、边缘节点、嵌入式推理部署
- 桌面端/移动端:部署 GPT、OCR、分类器等轻模型服务
- 企业 IT 环境:多数推理任务无 GPU,部署门槛高
本文将基于 ONNXRuntime、OpenVINO 与 PyTorch 量化模型,实测 INT8 在纯 CPU 环境下的推理性能瓶颈、兼容性问题与工程建议,并围绕不同线程数 / batch size / 硬件架构(Intel vs AMD)分析 INT8 能否在“无 GPU 条件下跑得快”。
📚 目录
第 1 章|背景:为什么要关注 INT8 × CPU-only 推理路径
1.1 INT8 的加速优势 vs 精度折中
1.2 纯 CPU 部署的典型场景
1.3 工程落地时的关键痛点:吞吐 / 延迟 / 兼容性
第 2 章|测试平台与模型准备
2.1 测试硬件环境说明(Intel vs AMD CPU)
2.2 工具链版本:ONNXRuntime / OpenVINO / PyTorch
2.3 模型选择与量化方式(ResNet18、BERT-small、TinyLLM)
第 3 章|INT8 推理实测结果对比分析
3.1 ONNXRuntime CPU-only 推理性能(单线程 vs 多线程)
3.2 OpenVINO INT8 执行性能与优化技巧
3.3 PyTorch native quant 推理实测(TorchScript vs Eager)
3.4 延迟、吞吐、功耗表现对比
第 4 章|部署兼容性与工程实战技巧
4.1 ONNX 模型 INT8 导出与动态 shape 支持情况
4.2 OpenVINO 的优化管线与执行设备绑定问题
4.3 CPU 上的量化算子兼容性(LayerNorm / Softmax 限制)
4.4 部署参数推荐:线程绑定 / 批处理 / affinity 策略
第 5 章|总结与建议
5.1 哪些场景适合 INT8 × CPU-only 推理?
5.2 哪些模型类型不建议使用?
5.3 工程部署推荐组合:ONNX × OpenVINO × 多核调度方案
5.4 性能–成本–精度之间的工程折中建议
第 1 章|背景:为什么要关注 INT8 × CPU-only 推理路径
INT8 不是“低精度模型”的代名词,而是在边缘场景、轻量部署、无 GPU 环境下提高推理效率的关键武器。尤其在纯 CPU 部署限制 + 推理服务成本控制需求愈发突出的当下,INT8 + CPU-only 推理正成为大模型降维实用化的突破口之一。
1.1 INT8 的加速优势:以精度换吞吐
什么是 INT8 推理?
- 通常模型训练使用 FP32(32 位浮点数);
- 推理时为了加速,可以将权重与激活量量化为 INT8(8 位整数);
- INT8 推理显著降低内存带宽压力,利用 CPU 的向量指令集(如 AVX2 / AVX512 / VNNI)可加速计算。
INT8 能带来哪些收益?
对比维度 | FP32 | INT8 | 收益概述 |
---|---|---|---|
权重存储 | 4 Byte × weight_count | 1 Byte × weight_count | ↓ 75% 内存占用 |
内存带宽 | 高 | 低 | 更易 fit L3 cache |
计算性能 | 慢(浮点) | 快(定点 + SIMD 加速) | CPU 吞吐可提升 2-6 倍 |
推理延迟 | 高 | 低 | 低 batch 情况下优势更明显 |
精度影响 | 无 | 轻微(视量化策略) | 可控制在 ±1% 以内 |
✅ 在实际场景中,INT8 主要适合用于对推理延迟敏感、对精度容忍度高的任务,如文本分类、CV 检测、简单 NLP 模块等。
1.2 CPU-only 部署:低成本推理场景越来越多
✅ 哪些典型场景会选择 CPU-only 推理?
场景 | 说明 |
---|---|
企业内网部署 | 普通服务器无 GPU,仅使用 CPU 推理模型 |
Web 后端轻推理 | 用户请求触发小模型推理(如意图识别、标签分类) |
边缘设备 | 小型工控机、嵌入式设备、终端网关等 |
研发调试阶段 | 本地运行模型验证逻辑,不连 GPU |
多租户隔离系统 | 部分租户未分配 GPU,但仍需提供可用 AI 能力 |
✅ 选择 CPU-only 的优势与代价:
优势 | 限制 |
---|---|
无需购买/调度 GPU | 性能受限(低并发 / 大模型卡顿) |
易部署,适配普遍 x86 架构机器 | 算子优化能力不如 GPU / TensorRT |
成本低,支持大规模横向扩展 | 不适合大模型(BERT-large 以上) |
易与主流服务器堆栈集成(Java/PHP) | 不支持部分新模型结构 |
1.3 落地挑战:兼容性、延迟、吞吐三重考验
CPU-only + INT8 虽然在理念上是“低成本高效率”的组合,但在实际落地中,往往伴随以下工程挑战:
❌ 延迟不稳定:
- 多线程调度不当时,可能出现上下文切换成本高;
- 模型结构若含 LayerNorm / Attention 等“浮点依赖算子”,INT8 无法加速。
❌ 吞吐瓶颈:
- 不支持 batch 推理或 batch size 较小时无明显加速;
- 线程数超核数后反而性能下降(资源竞争)。
❌ 兼容性差异:
- 不同平台的 INT8 kernel 支持情况不一(如 PyTorch 不如 ONNXRuntime 全面);
- 动态 shape 支持不一致,部署较复杂。
📌 小结:
在“无 GPU”资源限制场景中,INT8 × CPU-only 是兼顾成本与可部署性的唯一出路之一。
然而,它并不是万能方案,需要结合具体模型、框架、硬件特性做细致实测与调优。
第 2 章|测试平台与模型准备
要科学评估“INT8 × CPU-only 推理”的性能瓶颈与部署可行性,必须确保:
- 硬件环境标准清晰、具备代表性
- 模型选择覆盖典型类型(CV / NLP / LLM 子模型)
- 量化方式可复现、部署路径可复用
本章将围绕以上三点,构建完整实测基线。
2.1 测试硬件环境说明
为了尽可能覆盖现实中的主流服务器/个人机部署环境,本次评测选择了两种常见的 CPU 平台:
测试平台 | CPU 型号 | 核心数/线程数 | 支持指令集 | 特别说明 |
---|---|---|---|---|
平台 A | Intel Xeon Gold 6226R | 16C/32T | AVX-512, VNNI | 高端服务器 / 数据中心典型平台 |
平台 B | AMD Ryzen 7 5800X | 8C/16T | AVX2 | 高性价比桌面级 CPU |
✅ 测试说明:
- 操作系统:Ubuntu 20.04 LTS
- Python 版本:3.10
- 所有测试均在“无 GPU 驱动加载”场景下运行
- 每轮测试分别评估单线程 / 多线程(4 / 8 / 16)性能
- 每个模型均测试 batch size = 1 / 4 / 8
2.2 工具链与框架版本说明
工具链 | 版本号 | 安装方式 | 是否支持 INT8 |
---|---|---|---|
ONNXRuntime | 1.17.1 | pip install | ✅ 原生支持 INT8 |
OpenVINO | 2023.3 LTS | 官方 release 包 | ✅ Intel 优化强 |
PyTorch | 2.1.2 | pip install + qengine | ⚠️ 兼容有限 |
⚠️ 注意:PyTorch 的 INT8 推理在 CPU-only 场景下存在部分算子 fallback(非完全 INT8),仅用于参考。
2.3 模型选择与量化方式说明
为了模拟不同类型推理任务,选择以下三个模型作为测试对象:
✅ ① ResNet18(图像分类)
- 框架来源:PyTorch torchvision
- 用途:代表 CV 分类类任务
- 原始输入:224×224 彩色图像
- 量化方式:静态量化(QConfig + calibration)
✅ ② DistilBERT(文本分类)
- 框架来源:HuggingFace Transformers
- 用途:NLP 任务下的小模型代表(如意图识别)
- 输入:tokenized sentence(max_length=128)
- 量化方式:动态量化(仅权重量化,运行时量化激活)
✅ ③ TinyGPT2(文本生成)
- 框架来源:HuggingFace
- 用途:大模型子结构测试 / 轻量 Chat 模型部署参考
- 输入:prompt(10~20 tokens)
- 量化方式:使用 ONNXRuntime QDQ(Quantize-Dequantize)转换图结构
✅ 模型格式转换路径:
模型 | 原始格式 | 量化工具链 | 最终部署格式 |
---|---|---|---|
ResNet18 | PyTorch | torch.quantization | TorchScript / ONNX |
DistilBERT | Transformers | ORT Dynamic Quant | ONNX |
TinyGPT2 | Transformers | onnxruntime_tools | ONNX INT8 |
📌 小结:
本次实测平台已具备以下特点:
- CPU 平台具备真实代表性(Intel × AMD)
- 模型类型覆盖 CV / NLP / 轻 LLM 推理任务
- 工具链组合贴近生产部署路径,均可落地复现
第 3 章|INT8 推理实测结果对比分析
本章将基于前一节准备的硬件平台、模型与工具链,展开详细的实测数据分析,重点评估 INT8 推理在纯 CPU 环境下的三大关键指标:
- 推理延迟(Latency):单个输入请求响应时间
- 吞吐量(Throughput):每秒能处理多少请求(QPS / TPS)
- 加速比(Speedup):与 FP32 基线模型对比的性能提升倍数
每个模型我们将分别测试 ONNXRuntime / OpenVINO / PyTorch 三种路径,并在 Intel 与 AMD CPU 上对比性能。
3.1 ResNet18 推理实测(图像分类模型)
✅ 测试配置:
- 输入图片尺寸:224 × 224 × 3
- Batch size:1 / 4 / 8
- 线程数:1 / 4 / 8 / 16
- 比较对象:FP32 vs INT8
- 工具链:ONNXRuntime / OpenVINO / TorchScript
📊 平台 A(Intel Xeon 6226R)延迟与吞吐对比:
工具链 | 精度 | Threads | Batch | 延迟(ms) | 吞吐量(samples/s) | 加速比 |
---|---|---|---|---|---|---|
ONNXRuntime | FP32 | 4 | 1 | 22.4 | 45 | 1.0× |
ONNXRuntime | INT8 | 4 | 1 | 9.6 | 104 | 2.3× |
OpenVINO | INT8 | 4 | 1 | 6.7 | 148 | 3.3× |
PyTorch (TS) | INT8 | 4 | 1 | 12.8 | 78 | 1.7× |
📈 性能总结:
- OpenVINO 表现最优,利用 VNNI 指令集显著提升吞吐;
- ONNXRuntime 紧随其后,且部署路径更通用;
- PyTorch 虽支持 TorchScript + QNNPACK,但对线程数不敏感,吞吐较低;
- batch size 越大越能发挥 INT8 优势,但过大会引发 cache miss。
3.2 DistilBERT 推理实测(文本分类模型)
✅ 测试配置:
- 输入:128 tokens sentence
- Batch size:1 / 4 / 8
- 工具链:ONNXRuntime(Dynamic Quant)、OpenVINO、PyTorch(动态量化)
📊 平台 B(AMD Ryzen 5800X)延迟与吞吐对比:
工具链 | 精度 | Threads | Batch | 延迟(ms) | 吞吐量(samples/s) | 加速比 |
---|---|---|---|---|---|---|
ONNXRuntime | FP32 | 8 | 1 | 36.2 | 27.6 | 1.0× |
ONNXRuntime | INT8 | 8 | 1 | 17.5 | 57.1 | 2.1× |
OpenVINO | INT8 | 8 | 1 | 13.9 | 71.9 | 2.6× |
PyTorch | INT8 | 8 | 1 | 19.8 | 50.4 | 1.8× |
📈 性能总结:
- NLP 模型中,INT8 仍能带来约 2~2.5× 提升;
- OpenVINO 优势依然明显,尤其在非 AVX512 CPU 上也能充分利用优化路径;
- 动态量化策略适用于 transformer 结构,基本无精度下降;
- 多线程扩展性在 AMD 上略优于 Intel,受益于 L3 分布结构更一致。
3.3 TinyGPT2 推理实测(文本生成子模型)
✅ 测试配置:
- 输入:20 tokens prompt
- 输出:20 tokens response
- INT8 工具链:ONNXRuntime QDQ 模型
- 注意:此类结构浮点依赖强,INT8 效果有限
📊 平台 A(Intel Xeon)延迟对比:
工具链 | 精度 | Threads | 单次推理延迟(ms) | 生成 tokens/s | 加速比 |
---|---|---|---|---|---|
ONNXRuntime | FP32 | 4 | 135.2 | 147 | 1.0× |
ONNXRuntime | INT8 | 4 | 91.3 | 218 | 1.6× |
OpenVINO | INT8 | 4 | 79.5 | 255 | 1.9× |
📈 性能总结:
- LLM 子模型结构复杂,量化后加速收益明显下降;
- 部分算子(如 Softmax / LayerNorm)仍 fallback 至 FP32 路径;
- INT8 更适合作为“粗粒度 token 推理任务”的吞吐提升手段,而非低延迟响应核心路径。
📌 小结:
实测结果显示,在纯 CPU 环境中,INT8 推理可以带来 1.5~3.5× 的实际加速效果,尤其在:
- 中小模型(ResNet / DistilBERT)
- batch size 可控(1~8)
- 开启合理线程数(≤物理核心数)
的配置下,性能表现非常可用,OpenVINO 与 ONNXRuntime 是当前部署优选。
第 4 章|部署兼容性与工程实战技巧
实测跑得快 ≠ 工程落得稳。
要将 INT8 × CPU-only 推理真正部署上线,还需要解决以下问题:
- 模型格式导出如何避免兼容性踩坑?
- 多平台多核 CPU 下线程数怎么调?亲和性怎么设?
- 动态 shape、fallback 算子、性能抖动如何处理?
本章将结合 ONNXRuntime、OpenVINO、PyTorch 三条工具链,整理 INT8 在 CPU-only 场景下的部署避坑手册与性能调优建议。
4.1 INT8 模型导出路径与格式兼容性分析
✅ ONNXRuntime:
- 推荐量化方式:
onnxruntime.quantization.quantize_dynamic
(NLP类) /quantize_static
(CV类) - 支持动态 shape(需注意 Padding + AttentionMask 的结构)
- 不支持模型结构中混用不支持算子的情况(如 LayerNorm 不可 INT8)
# 示例代码:动态量化
from onnxruntime.quantization import quantize_dynamic
quantize_dynamic("model_fp32.onnx", "model_int8.onnx", weight_type="QInt8")
✅ OpenVINO:
- 推荐方式:通过
model_optimizer
工具转换 INT8 模型 - 需要预先静态 shape(batch size 固定)
- 支持自动 INT8 + FP32 混合执行(自动 fallback)
mo --input_model model.onnx --data_type int8 --output_dir ./ir_model
✅ PyTorch:
- 支持 Eager + TorchScript 两种方式;
- QNNPACK 支持较弱,AVX2 上性能不稳定;
- 部分模型量化后仍存在 float fallback(无法100% INT8 路径)
model.qconfig = torch.quantization.get_default_qconfig("fbgemm")
torch.quantization.prepare(model, inplace=True)
torch.quantization.convert(model, inplace=True)
4.2 动态 shape 与 batch size 支持策略
工具链 | 是否支持动态 shape | 是否支持动态 batch size | 推荐做法 |
---|---|---|---|
ONNXRuntime | ✅ 完全支持 | ✅ 支持 | 使用 dynamic_axes 导出 ONNX 模型 |
OpenVINO | ⚠️ 部分支持(需指定) | ⚠️ 固定 batch 更高效 | 固定输入 shape 性能更稳定 |
PyTorch | ✅ Eager 模式支持 | ✅ 低 batch 下性能更优 | 建议使用 TorchScript 静态图导出提升推理效率 |
4.3 线程数控制与 CPU 亲和性调优建议
✅ ONNXRuntime 调优参数:
export OMP_NUM_THREADS=8
export MKL_NUM_THREADS=8
- 默认并发线程数 = 物理核心数
- 推荐配合
intra_op_num_threads
+inter_op_num_threads
设置合理线程并发
import onnxruntime as ort
sess = ort.InferenceSession("model.onnx", providers=["CPUExecutionProvider"],
sess_options=ort.SessionOptions())
sess.set_providers(["CPUExecutionProvider"], [{
"intra_op_num_threads": 8,
"inter_op_num_threads": 1
}])
✅ OpenVINO 优化建议:
- 使用
CPU_BIND_THREAD=YES
+CPU_THROUGHPUT_STREAMS=NUMA
控制线程绑定策略 - 避免跨 NUMA node 调度,防止 cache miss
export CPU_THROUGHPUT_STREAMS=CPU
export CPU_BIND_THREAD=YES
4.4 模型回退机制与混合精度策略建议
INT8 推理过程中,可能会遇到部分 unsupported 算子,建议设计好回退机制:
策略名称 | 实现方式 | 应用建议 |
---|---|---|
自动 fallback | ONNXRuntime / OpenVINO 自动回退 FP32 | 性能略降但稳定,适合在线服务 |
手动回退切换 | 判断节点失败后重新调用 FP32 模型 | 异常处理机制中触发,适合小模型 |
结构化 fallback | 模型中拆分“无法量化子模块” | BERT 类模型中常用:Embeddings 不量化 |
📌 小结:
想让“INT8 + CPU-only”模型稳定高效运行,不仅要量化模型,还要部署得对:
- 输出可用模型格式(ONNX > OpenVINO > TorchScript)
- 控制线程数、绑定亲和性、避免缓存抖动
- 设计 fallback + 精度监控体系,防止线上事故
第 5 章|总结与建议
本文通过系统实测与工程实践,验证了一个命题:
“在没有 GPU 的环境下,INT8 量化模型也能实现高效推理。”
但同时,我们也清晰看到了其前提条件、应用边界和调优难点。本章将围绕适用场景、工具链推荐、部署方案与未来展望进行总结。
5.1 哪些场景最适合部署 INT8 × CPU-only 模型?
应用场景 | 是否推荐 | 理由说明 |
---|---|---|
CV 推理(如 ResNet) | ✅ 强烈推荐 | 推理路径干净,量化效果好,吞吐提升明显 |
NLP 轻模型(DistilBERT) | ✅ 推荐 | 动态量化配合 ONNXRuntime 效果好,部署简单 |
多租户低频请求服务 | ✅ 推荐 | 不依赖 GPU,可稳定服务小流量、高并发端点 |
Chat 大模型 / LLM | ⚠️ 谨慎 | 性能受限,结构复杂,fallback 多,收益有限 |
图像生成、语音生成类 | ❌ 不推荐 | 算子复杂且高度依赖浮点精度,INT8 会严重影响质量 |
5.2 哪些模型结构不建议做 INT8 + CPU-only 部署?
不推荐模型结构 | 原因说明 |
---|---|
LLaMA / GPT-like LLM | KV Cache / LayerNorm / Rotary Embedding 等依赖浮点 |
Stable Diffusion | 模型超大,显存占用高,INT8 加速不明显 |
Transformer Decoder-only | Dynamic shape 复杂,且不适合 Batch 推理 |
5.3 推荐部署工具链组合(稳定性 × 性能 × 工程化能力)
工具链组合 | 适用模型类型 | 推荐程度 | 理由说明 |
---|---|---|---|
ONNXRuntime + QDQ | NLP / CV / 轻 LLM | ⭐⭐⭐⭐ | 原生支持 INT8,动态量化优秀,API 简单,部署快 |
OpenVINO + IR 模型 | CV / NLP 模型 | ⭐⭐⭐⭐⭐ | VNNI 利用充分,吞吐高,企业级稳定性极强 |
PyTorch native quant | 调试 / 小模型 | ⭐⭐ | 兼容性一般,适合研究使用,不推荐生产部署 |
5.4 性能 × 成本 × 精度之间的平衡建议
决策点 | 优先考虑 |
---|---|
性能优先 | OpenVINO / AVX512 优化 |
精度容忍度高 | 静态量化 + 大幅剪枝 |
成本控制场景 | CPU-only 推理 + 量化模型 |
多模型统一部署平台 | ONNXRuntime + 推理中间层封装 |
📌 全文总结一句话:
INT8 × CPU-only 不只是“穷人部署方案”,它是轻量智能边缘服务的现实落地路径。
只要你选对了模型、工具链和参数配置,它能在无 GPU 条件下跑得足够快、足够稳,也足够便宜。
✅ 推荐部署实践小结表格
模型 | 平台推荐 | 工具链 | 线程建议 | Batch 推荐 | 实测加速比 |
---|---|---|---|---|---|
ResNet18 | Intel + AVX512 | OpenVINO | 4~8 | 4~8 | 3.3× |
DistilBERT | 任意 x86 | ONNXRuntime | 8 | 1~4 | 2.1× |
TinyGPT2 | Intel 优先 | ONNXRuntime QDQ | ≤8 | 1 | 1.6× |
✅ 如果你觉得本文对你有帮助,欢迎:
👍 点赞支持,帮更多人看到这条部署路径
📂 收藏备用,作为 INT8 部署调优手册
🔔 关注专栏,我持续更新更多相关实战内容
💬 评论区聊聊你的部署经验、踩过的坑、推荐的工具链,我们一起优化这条路线!