激光雷达全局定位综述:挑战、进展和开放问题

论文标题:

A Survey on Global LiDAR Localization: Challenges,
Advances and Open Problems

论文作者:

Huan Yin, Xuecheng Xu, Sha Lu, Xieyuanli Chen, Rong Xiong, Shaojie Shen, Cyrill Stachniss, Yue Wang

论文地址:

https://link.springer.com/article/10.1007/s11263-024-02019-5

导读: 本文概述了激光雷达全局定位的最新进展,并且从三个主题对其进行讨论。此外,还介绍了激光雷达全局定位中的开放挑战和具有前景的方向,旨在为研究者提供全面且有价值的参考。©️【深蓝AI】编译

1. 摘要

获取自身的位姿信息是所有移动机器人应用的关键所在。因此,位姿估计是移动机器人的核心功能之一。在过去的二十年里,激光雷达已经成为机器人定位和建图的标准传感器。本文旨在概述基于激光雷达的全局定位的最新进展,并且从表述问题和探索应用范围开始。本文对定位方法进行回顾,包括若干个主题的最新进展,例如地图、描述子提取和跨机器人定位。

本文的内容分为三个主题:

1)涉及全局地点检索和局部位姿估计;

2)将单次测量升级为连续测量以实现连续的全局定位;

3)着重于将单一机器人全局定位扩展到多机器人系统中的跨机器人定位。

此外,本文讨论了激光雷达全局定位中的开放挑战和有前景的方向以结束本篇综述。据我们所知,本文是首篇对移动机器人的激光雷达全局定位进行全面调研的论文。

2. 介绍

自主导航对于大量的移动机器人应用而言是至关重要的,包括道路上的自动驾驶汽车和农场中的农业机器人。为了实现自主导航,机器人定位在几乎任何导航系统中均发挥着不可或缺的作用。现今的移动机器人任务要求这些系统在大规模且不断变化的环境中运行,这对机器人定位和建图提出了挑战。

全球导航卫星系统(GNSS)是一种广泛用于室外机器人导航的设备。GNSS主要在两方面有助于机器人定位。首先,GNSS融合的方法能够在有限的误差范围内连续跟踪机器人的局部运动。其次,GNSS能够提供全局地点的信息。这些信息可以帮助机器人在地球上初始化其地点,并且在机器人定位失效时恢复其地点。事实上,这两方面与两个典型的定位问题相关:位姿跟踪和全局定位。与位姿跟踪问题不同,全局定位需要机器人在给定的地图上从头开始全局定位其自身。因此,全局定位问题中的位姿空间通常大于位姿跟踪问题中的位姿空间。

GNSS在很大程度上依赖于卫星发送的数据质量,这使得它在室内、密集的城市环境或者森林等地区无法使用。在这种环境中,可以部署超宽带(UWB)和其它信号发射器来实现全局定位。外部标记和标签也可以为视觉辅助定位提供全局地点和方向信息。这些方法依赖于外部基础设施的分布,而改变环境往往是不希望的。因此,在不改变环境的情况下使用车载传感器是移动机器人的一种更通用的解决方案。视觉图像信息丰富,易于从相机中获取。早期的方法使用相机来实现全局视觉定位,这是一个具有重要意义的主题,吸引了许多研究者的兴趣。

激光雷达传感器在过去25年中取得了重大进展。早期的激光扫描仪仅提供低分辨率和短距离的2D激光点。传感器技术的发展推动了激光雷达感知从2D演变到3D,从稀疏点云到相对稠密点云。在2007年DARPA城市挑战赛中,Velodyne HDL-64E传感器安装在完成比赛的六辆自动驾驶车辆中的五辆上。

激光雷达传感器现在正在成为机器人界的标准设备。激光雷达传感器通过发射和接收激光来直接提供距离测量值。与来自相机的视觉图像相比,这些长距离测量结果对光照和外观变化更具鲁棒性,从而使激光雷达全局定位在大规模且不断变化的环境中更为实用。这促使本文对使用激光雷达传感器实现全局定位进行全面概述。

2.1 问题表述和论文结构

给定先验地图 M M M和输入数据 D D D,机器人状态(位姿) X X X可以通过贝叶斯公式表示如下:

X ^ = a r g m a x X p ( X ∣ D , M ) = a r g m a x X p ( D ∣ X , M ) p ( X ∣ M ) (1) \hat{X} = \mathop{argmax}\limits_{X}p(X|D,M) = \mathop{argmax}\limits_{X}p(D|X,M)p(X|M) \tag{1} X^=Xargmaxp(XD,M)=Xargmaxp(DX,M)p(XM)(1)

其中, p ( X ∣ D , M ) p(X|D,M) p(XD,M)是给定位姿和地图的似然, p ( X ∣ M ) p(X|M) p(XM) X X X的先验信息。地图 M M M是机器人定位的一个关键因素。具体而言,激光雷达地图分为三种类型:基于关键帧的子图、全局特征地图和全局度量地图。

对于局部位姿跟踪,先验分布 p ( X ∣ M ) p(X|M) p(XM)通常为特定的单峰分布,例如 p ( X ) ∼ N ( ⋅ ) p(X) \sim \mathcal{N}(\cdot) p(X)N()。然而,对于全局定位,机器人不知道其地点,并且位姿误差无法限制。在经典的概率机器人学中,概率 p ( X ∣ M ) p(X|M) p(XM)通常为均匀分布,即 p ( X ∣ M ) = 1 ∣ X ∣ p(X|M) = \frac{1}{\lvert X \rvert} p(XM)=X1。因此,位姿估计问题给定如下:

X ^ = a r g m a x X p ( D ∣ X , M ) (2) \hat{X} = \mathop{argmax}\limits_{X}p(D|X,M) \tag{2} X^=Xargmaxp(DX,M)(2)

这是全局定位问题在给定地图上的通用表示。求解空间实际上比局部位姿跟踪问题中的求解空间大很多,这使得全局定位问题更具挑战性。

本文从单一输入和单一输出来开始讨论这个问题。如果 D D D为时刻 t t t的单一激光雷达点云 z t z_t zt,该问题就是要估计一个全局位姿 x t x_t xt。该问题称为单次全局定位问题,其可以通过最大似然估计(MLE)问题进行表述:

x ^ t = a r g m a x X p ( z t ∣ x t , M ) (3) \hat{x}_t = \mathop{argmax}\limits_{X}p(z_t | x_t, M) \tag{3} x^t=Xargmaxp(ztxt,M)(3)

本文根据两种不同方法的耦合度对单次方法进行分类:地点识别和位姿估计,这是本综述中的两类主要方法。直观而言,地点识别以检索的方式实现全局定位,而位姿估计提供了细粒度的位姿。

值得注意的是,测量值 z t z_t zt可以为某一时刻采集的激光雷达扫描或者为机器人运动过程中累积的激光雷达子地图。它们都被描述为激光雷达点云,可以作为单次全局定位系统的一次测量。

通常,激光雷达地图的规模远大于单一激光雷达点云的规模,即,这使得单次问题难以求解。为了提高全局定位的性能,一种直接的方法为使用连续的扫描或者子地图作为测量数据,即 ∣ M ∣ > ∣ z t ∣ \lvert M \rvert > \lvert z_t \rvert M>zt。然后,将原始问题转换为连续的全局定位问题,其通过下式估计 X t X_t Xt

X ^ t = a r g m a x X ∏ k = 1 t p ( z k ∣ x k , M ) p ( X t ) (4) \hat{X}_t = \mathop{argmax}\limits_{X}\prod^t_{k=1}p(z_k|x_k, M) p(X_t) \tag{4} X^t=Xargmaxk=1tp(zkxk,M)p(Xt)(4)

其中, p ( X t ) p(X_t) p(Xt)包含先验信息,表示连续的 X t X_t Xt。该估计问题可以通过以批量处理的方式融合单次全局定位结果来求解全局定位,类似于SeqSLAM。通过求解这个问题,全局定位能够提供机器人位姿相对于地图的轨迹。注意,额外的里程计信息可以通过约束位姿空间来改进连续的全局定位,此时输入数据表示为 D = { Z t , U t − 1 } D = \lbrace Z_t, U_{t-1} \rbrace D={Zt,Ut1},其中 U U U表示移动机器人的里程计输入。

然而,在很多实际应用中,研究者可能仅对具有连续输入的最终全局位姿感兴趣,例如将 x t x_t xt作为局部位姿跟踪的初值。另一方面,单次全局定位的结果可能不那么准确,并且需要后端来跟踪多个假设。在这种情况下,连续全局定位可以被作为一个估计 x t x_t xt的马尔可夫过程,表述如下:

x ^ t ∝ p ( z t ∣ x t , M ) ⏟ M e a s u r e m e n t p ( x t ∣ x t − 1 , u t − 1 ) ⏟ M o t i o n p ( X t − 1 ) ⏟ P r i o r (5) \hat{x}_t \propto \underbrace {p(z_t | x_t, M)}_{Measurement} \underbrace{p(x_t | x_{t-1}, u_{t-1})}_{Motion} \underbrace{p(X_{t-1})}_{Prior} \tag{5} x^tMeasurement p(ztxt,M)Motion p(xtxt1,ut1)Prior p(Xt1)(5)

其中,测量模型和运动模型与 z t z_t zt u t − 1 u_{t-1} ut1相关,先验 p ( X t − 1 ) p(X_{t-1}) p(Xt1)由先前的递归推理确定。该公式也被称为递归滤波,一个具有代表性的工作为蒙特卡洛定位(MCL)。批量处理和递归滤波是机器人状态估计的两个主要分支。

由公式(5)可知,单次测量 p ( z t ∣ x t , M ) p(z_t|x_t,M) p(ztxt,M)仍然在连续全局定位问题中起着关键作用。从另一个角度来看,还可以根据地点识别和位姿估计的使用对连续全局定位进行分类。本文在后面将引入连续地点匹配方法和连续度量方法。前者主要融合连续的地点识别结果,而后者着重于估计度量位姿。

在这里插入图片描述
图1|论文结构©️【深蓝AI】编译

2.2 典型情况

具体的全局定位方法根据机器人建图和定位的实际情况而有所不同。三种典型的情况如下所示。

a.回环检测

在SLAM框架中,回环检测(LCD)是一种用于确定机器人是否回到先前访问过的地点的方法。然而,简单地识别访问过的地点是不足以在SLAM中实现回环的,通常还需要当前地点和先前地点之间的相对变换。本文交替使用术语LCD和回环,因为这两者均涉及检测重新访问的地点以及估计相对变换。LCD通常被认为是一个intra-sequence问题。intra-sequence是指测量和地图来自同一序列的场景。相反,inter-sequence是指测量和地图来自不同数据序列的场景。

b.重定位

当位姿跟踪失败或者机器人被绑架时,重定位用于帮助机器人恢复定位。此外,它还可以用于在机器人刚开始导航时激活机器人。回环检测(LCD)和重定位的基本区别在于所使用的数据序列:重定位被归类为一个inter-sequence问题,其中测量和地图从不同的数据序列中获取。值得注意的是,重定位在长期多段序列的情况下可能会带来巨大挑战。此外,由于重定位中没有可用的先验信息,因此重定位的位姿空间在某些情况下可能大于LCD的位姿空间,而LCD可以使用里程计信息作为粗略的初始估计值,从而将位姿空间减小到更小的规模。

c.跨机器人定位

通过增量SLAM或者其它建图技术可以从多机器人生成多个在线地图。这些地图可能有部分重叠。跨机器人定位或者多机器人建图旨在将一个机器人在另一个机器人的地图中进行全局定位。具体而言,和来自不同的机器人,并且需要估计所有机器人的位姿。理论上,跨机器人定位问题和单机器人重定位问题相同。相关技术也可以用于离线地图合并应用。

图2展示了三种常见场景,其中机器人需要估计其当前测量与其自身地图或者其它机器人的地图之间的相对变换。

在这里插入图片描述
图2|三种典型场景:LCD、重定位和跨机器人定位©️【深蓝AI】编译

这种能力通常称为全局定位,并且可以通过各种传感器和融合的传感器模态来实现。本项研究着重于全局激光雷达定位问题以及与之相关的技术和开放问题。

2.3 与先前调研的关系

Lowry等人在2015年对视觉地点识别进行全面回顾。他们首先讨论了“地点”的定义,并且引入了视觉地点识别的相关技术。Yin等人在2022年进行的一项通用地点识别调研从多个角度回顾了地点识别主题,包括传感器模态、挑战和数据集。然而,地点识别通过检索来确定机器人是否重新回到先前的地点。Toft等人于2020年概述了长期视觉定位,并且对最先进的方法进行评估,例如基于视觉地点识别(图像检索)和基于结构的相机位姿估计。Elhousni和Huang提供了一项激光雷达定位调研,着重于激光雷达辅助的自动驾驶汽车位姿跟踪。这些论文中没有明确概述激光雷达地点识别和位姿估计。从激光雷达全局定位的角度看,本文提供了一项涵盖相关主题的完整综述。

3. 用于全局定位的地图

在深入研究全局定位方法之前,有必要介绍用于机器人定位的地图 M M M。这部分主要着重于支持全局定位的地图,并且将通用地图分为三个主要类别:基于关键帧的子地图、全局特征地图和全局度量地图。本文列出了三种广泛使用的地图,并且讨论了其中的地图结构和表示。

3.1 基于关键帧的子地图

基于关键帧的子地图是一种非常流行的机器人定位地图结构,特别是在大规模环境中。它由一组关键帧组成,每个关键帧包含一个机器人位姿和一个对齐的子地图,以及关键帧之间拓扑或者几何连接形式的额外信息。基于关键帧的子地图容易维护,非常适合下游导航任务。基于关键帧的地图可以表示为:

M s u b = { m 1 , . . . , m s } (6) M_{sub} = \lbrace m_1,...,m_s \rbrace \tag{6} Msub={m1,...,ms}(6)

其中, s s s表示子地图的数量。换而言之,如果只检索关键帧数据库中的地点,则 s s s对应于 X \mathbb{X} X的规模。

基于关键帧的地图有效地离散化整个位姿空间,从而降低了问题的复杂度。这种离散的地图结构特别适合地点检索,因为每个关键帧可以被作为移动机器人的一个不同“地点”。每个关键帧中包含的子地图都可以作为全局描述子来检索,也可以使用额外的度量网格或者点进行增强以实现几何配准。值得注意的是,关键帧位姿之间的距离实际上是一个关键因素。此外,基于关键帧的地图可能不适合在某些环境中进行全局定位,例如很多局部环境类似的室内或者森林区域。

3.2 全局特征地图

全局特征地图保持了稀疏的局部特征点来描述环境。早期的SLAM系统从激光数据中提取路标以支持建图和定位。这些路标本质上是低维特征点。如今,激光雷达特征点通常具有高维信息。因此,基于特征对应的匹配可以直接用于相对变换估计。更重要的是,局部特征是稀疏且易于管理的,这使导航系统更轻量化。

应用这种地图的主要挑战为生成和维护稳定的特征点。例如,高精地图是自动驾驶汽车的典型全局特征地图。高精地图的构建涉及多个车载传感器和高性能计算。对于仅使用激光雷达的全局特征地图,需要一个强大的前端特征提取器来确保地图质量。

3.3 全局度量地图

全局度量地图是描述工作环境的稠密度量表示的单张地图。通常,度量和表示包括2D/3D点、栅格、体素和网格。全局度量地图易于使用,并且可以提供高精度的几何信息。

无论是位姿跟踪或者全局定位,都是常见自主导航系统中的一个模块。在大规模环境中,全局度量地图对于资源有限的移动机器人而言是负担。一种可能的解决方法为在保持主要几何性质的同时对稠密点云进行降采样或者压缩。

值得注意的是,隐式地图表示正变得主流,包括基于非学习和学习的地图。一项著名的工作是正太分布变换(NDT),其使用概率密度函数作为表示。目前基于学习的隐式表示利用了来自神经辐射场(NeRF)的技术,与隐式表示相比,该技术使用更少的参数,并且由于其连续表示,因此有可能实现更高的精度。地图表示是SLAM和其它导航相关应用的一个基本但关键的主题。

4. 单次全局定位:地点识别和位姿估计

单次全局定位方法仅使用单个激光雷达点云来求解位姿估计问题。地点识别是实现这一点的核心模块。通常,地点识别是基于关键帧的子地图的判别式模型,其中每个关键帧通常由一个全局描述子和一个机器人位姿组成。地点识别的核心思想为,基于全局描述子以及 z t z_t zt M s u b M_{sub} Msub之间的测量相似性来检索最高概率的地点。更具体而言,这些全局描述子应该具有一定的区分性。

然而,地点识别只能提供粗略的地点作为估计的“位姿”,而仍然需要通过精确的特征匹配或者类似技术来实现局部位姿估计。

图3展示了地点识别模块和位姿估计模块之间的四种类型组合。

在这里插入图片描述
图3|四种类型的单次全局定位©️【深蓝AI】编译

本文还列出了激光雷达单次全局定位的若干个具有代表性的工作,如表格1所示。

在这里插入图片描述
表1|激光雷达单次全局定位©️【深蓝AI】编译

4.1 仅有地点识别

仅有地点识别的方法通过在预先构建的基于关键帧的地图中检索地点来解决全局定位问题。图4展示了一种仅使用地点识别的方法。

在这里插入图片描述
图4|用于激光雷达全局定位的仅有地点识别的方法LDP-Net©️【深蓝AI】编译

激光雷达地点识别中最具挑战性的部分为全局描述子提取。与视觉图像相比,来自激光雷达的原始点云是无纹理且形式不规则的。从数据处理的角度看,全局描述子提取是一种点云压缩方法,同时保持了不同地点的区分度。

a.稠密点云或者体素

基于稠密点云或者稠密体素的工作是指那些直接在稠密表示上生成全局描述子的工作。早期的激光雷达仅为机器人定位提供2D激光点。Granström等人于2009年设计了一种由2D激光扫描中的20种特征组成的全局描述子。然后将描述子和标记输入到弱分类器Adaboost中进行训练。

Granström等人于2011年将基于学习的方法扩展到3D激光特征。Röhling等人使用快速直方图将3D点的距离分布编码为一维直方图,用于地点检索。受到Röhling等人的启发,Yin等人于2017年基于3D激光雷达扫描中的高度和距离划分,构建了一种类似2D图像的表示。然后,将该问题转换为图像分类问题,其可以通过训练一个2D卷积神经网络来求解。除了使用激光雷达的距离信息,Cop等人还利用了激光雷达强度的直方图作为地点识别和几何验证的描述子。

上述所有方法均设计了用于激光雷达地点识别的2D或者1D直方图。这是因为3D点云的深度学习当时尚未成熟。在2017年,Qi等人提出了PointNet,它可以学习用于3D深度学习任务的局部和全局特征。

PointNetVLAD利用PointNet来提取3D点云的特征,并且通过NetVLAD将其聚合到一个全局描述子中。但是受到PointNet的限制,PointNetVLAD忽略了3D点云中的局部几何分布。随着Transformer在各种任务中出现,注意力机制逐渐用于选择重要的局部特征进行地点识别。PCAN考虑了局部特征,并且计算注意力图来确定每个特征的重要性。Hui等人于2021年提出了一种称为PPT-Net的金字塔点云transformer网络,该网络可以学习不同尺度的局部特征,并且通过金字塔VLAD将其聚合为描述性的全局表示。Lin等人于2022年利用SE(3)- equivariant网络来学习全局描述子,使地点识别对旋转和平移变化更为鲁棒。为了节省内存并且提高传输效率,Wiesmann等人提出了一种通过注意力机制聚合的压缩点云表示,用于地点识别。

另一种主流的方法为先对3D点云进行体素化,然后提取全局描述子用于地点识别。体素化过程可以使原始点云更加规则。这使得3D点云接近类似3D图像的表示,即每个栅格(2D)或者立方体(3D)可以被作为一个图像块。在深度学习时代,Zhou等人与2021年提出了NDT-Transformer,其将原始点云转换为NDT单元,并且使用注意力模块来增强区分性。Siva等人于2020年提出的VBRL引入了一种基于体素的3D表示,其在优化公式中结合了多模态特征。Oertel等人提出了AugNet,这是一种基于增强图像的地点识别方法,其结合了外观和结构特征。Komorowski等人于2021年引入了MinkLoc3D,其通过特征金字塔网络来提取稀疏体素化点云中的局部特征,并且通过池化操作将其聚合为一个全局描述子。随后,他们又提出了MinkLoc3Dv2作为MinkLoc3D的增强,其利用更深、更广的网络架构和改进的训练过程。

b.基于稀疏分割

基于分割的方法是指基于点分割来实现地点识别的工作,其利用局部和全局表示的优势。Fan等人于2020年提出的Seed将原始点云分割为目标,并且将这些目标的拓扑信息编码为描述子。Kong等人于2020年提出的SGPR利用了原始点云的语义和拓扑信息,并且使用图神经网络来生成语义图表示。Gong等人于2021年在高级描述子搜索和低级几何搜索中利用了分割的空间关系。总之,基于分割的方法接近于人类思考地点识别的过程,即使用高级表示而不是低级几何。另一方面,这些方法在很大程度上依赖于分割质量和额外的语义信息。3D点云分割方法通常非常耗时并且资源消耗非常大。

c.基于投影

与上述两个方法不同,基于投影的方法不直接在3D点云或者分割上生成描述子。相反,这些方法首先将3D点云投影到2D平面上,然后实现全局描述子提取。He等人于2016年提出了M2DP,其将原始点云投影到多个2D平面上。Li等人于2022年提出的RINet首先将点云转化为由语义信息编码的scan context图像,并且设计了用于学习旋转不变性表示的旋转不变网络。Yin等人于2022年通过离散化3D空间,设计了一种多层球面投影。然后基于球面投影,将VLAD层和球面卷积集成为SphereVLAD。SphereVLAD能够学习用于地点识别的视角不变的全局描述子。

4.2 先地点识别后局部位姿估计

本节概述了用于高精度变换估计的局部位姿估计方法。注意,这种局部位姿估计与地点识别无关。这两个模块被认为是独立的,并且以由粗到精的方式来实现全局定位:首先在基于关键帧的子地图中实现地点检索,然后通过匹配输入激光雷达数据将局部位姿估计应用于被检索关键帧所对应的地图数据上。因此,对于这类方法,关键帧不仅包含用于最近邻搜索(地点检索)的全局描述子,还包括用于局部位姿估计的度量表示。传统上,局部位姿估计是通过精确的点云配准来实现的。

点云配准(或者称为扫描匹配)是机器人和计算机视觉领域中的一个热门主题,其目的是通过最小化误差函数来估计最优变换,如下所示:

T = a r g m i n T ∈ S E ( 3 ) e ( M , T P ) ) (7) T = \mathop{argmin}\limits_{T \in SE(3)}e(\mathcal{M},T\mathcal{P})) \tag{7} T=TSE(3)argmine(M,TP))(7)

其中, T T T为待估计的相对变换(位姿); P P P M M M分别为起始点云(输入激光雷达测量数据 z t z_t zt)和目标点云(检索到的关键帧 m m m的先验地图); e ( ⋅ ) e(\cdot) e()为最小化的误差函数。具体而言,根据点云配准方法是否使用空间中的对应关系进行位姿估计,可以将其分为两类:基于对应关系的方法和无对应关系的方法。本节着重于全局点云配准,即在没有初始值的情况下对齐两组激光雷达点云。

a.基于对应关系

如果查询测量数据和地图之间的对应关系(数据关联)是已知的,则可以通过封闭形式求解配准问题。不幸的是,实际上初始对应关系是未知的。最著名的扫描配准方法是迭代最近点(ICP)方法,它考虑了基本的点到点对应关系搜索,并且在每次迭代过程中寻找最优解。尽管其广泛应用于点云配准过程,但是配准结果的质量受到噪声和异常值存在的限制。一种基于ICP的有效实时配准系统为KISS-ICP。为了改进原始的ICP算法,已经设计了很多变体。概率方法Generalized-ICP和NDT定义了点或者体素的高斯模型,并且以分布到分布的方式进行配准,从而降低噪声的影响。

然而,ICP及其变体可能会陷入局部极小值,因此不适用于全局配准。局部极小值是由欧几里得空间中最近邻对应关系的假设导致的。尽管已经出现了基于局部特征的方法来提取鲁棒特征,但是与2D图像描述子相比,激光雷达的特征提取和描述研究较少。由于距离数据和图像数据本质上不同,因此在激光雷达扫描数据中提取和描述可重复特征仍然是一个尚未解决的问题。为了解决这些问题,近年来主要有两条研究路线:一条路线是研究有效的激光雷达特征;另一条路线是配置一个能够处理高异常率的鲁棒估计器。例如,Qiao等人于2023年提出的G3Reg通过在前端构建局部高斯来建模点云簇。在后端,G3Reg通过高斯概率来求解最终位姿估计的多个最大簇。图5展示了G3Reg的配准过程。

在这里插入图片描述
图5|G3Reg的配准过程©️【深蓝AI】编译

b.无对应关系

无对应关系方法的主要思想为基于特征相似性来配准点云。考虑到收敛性,现有的方法可以划分为局部收敛方法和全局收敛方法。局部收敛方法源自图像中的光流。Aoki等人于2019年提出的PointNetLK使用了PointNet来学习每个点的局部特征,然后迭代地对齐学习的特征,而没有使用3D坐标,因此不需要对空间中点对应关系进行代价高昂的计算。这类方法的一个缺点是迭代求解器,它对初始值敏感,可能会误导特征学习。

全局收敛方法主要基于相关性思想。与图像配准的流程一样,Bülow和Birk于2018年利用了Fourier-Mellin变换来实现全局收敛的3D配准。Zhu等人于2022年提出了在特征空间中学习每组点云的嵌入。全局收敛主要有助于相关性,这是一种固有的穷举搜索,可以通过频谱解耦进行有效评估。

4.3 位姿估计解耦的地点识别

上一节需要两个独立的步骤来处理地点识别和局部位姿估计。一个改进的方向为设计一个共享的特征嵌入或者表示,让地点识别和位姿估计从中受益。因此,地点识别和位姿估计可以共享相同的处理流程,从而使地图更简洁,流程更紧凑。本文将这类方法称为位姿估计解耦的地点识别,下面将按照输出位姿的维度进行分类。

a.3自由度位姿估计

对于在平面上工作的移动机器人而言,位姿估计主要着重于三自由度(3-DoF):地点和方向/朝向(偏航角)。一种著名的方法为scan context,其将3D点云划分到方位角和半径的栅格中,其中每个值是栅格中所有点的最大高度。相似性为同一索引下所有列向量之间的余弦距离之和。该方法使用一种从扫描上下文中提取的旋转不变描述子,用于地点识别过程中的top-k检索,然后通过列偏移进一步计算相似性和方位角。

以下一些方法是为了提高原始scan context的可区分性和不变性而设计的。例如,Li等人于2021年引入了点云的语义标签。Wang等人于2020年利用傅里叶变换来估计沿方位角相关轴的平移偏移。Xuecheng等人于2021年提出了DiSCO,这是一种可微分的scan context方法,以端到端的方式训练地点识别和位姿估计。图6展示了DiSCO用于全局定位的流程和表示。

在这里插入图片描述
图6|可微分的scan context方法DiSCO©️【深蓝AI】编译

b.6自由度位姿估计

很多视觉全局定位框架提取图像上的局部描述子,用于地点识别和位姿估计。通常,使用词袋、VLAD或者ASMK等方法将局部特征聚合为全局描述子。同时,经常使用基于匹配的局部特征的PnP算法从视觉数据中提取6自由度位姿。受到视觉图像匹配的启发,Shan等人于2021年将传统的BoW算法用于基于激光雷达全局定位的地点识别中。具体而言,他们将高分辨率激光雷达点云的强度转化为图像,并且基于Oriented FAST和ORB提取特征。但是他们的工作需要高分辨率激光雷达来确保局部特征的提取和描述。

受到视觉启发的匹配过程需要投影来降低3D点云的维度。一些研究者提出为全局描述子编码和局部匹配设计可区分的3D特征,从而实现激光雷达全局定位中的地点检索和6自由度位姿估计。Cattaneo等人于2022年提出了一种端到端的LCDNet,它可以实现地点识别和位姿估计。LCDNet修改了用于局部特征提取的PV-RCNN,并且构建了用于特征匹配的可微分不平衡最优传输。Yuan等人于2023年提出了一种基于三角形的全局描述子,这是一种用于地点识别和相对位姿估计的稳定三角形描述子(STD)。STD维护了一个哈希表作为全局描述子,并且通过表中三角形的投票来实现地点识别。

上述所有方法通过最近邻搜索或者对全局描述子进行穷举比较来实现地点识别。一些工作仅使用局部关键点或者特征来构建耦合方法,并且没有用于地点检索的全局描述子。

4.4 一阶段全局位姿估计

基于地点识别和位姿估计技术的两阶段方法已经各种数据集和应用中成功验证。因此,自然而然地会提出疑问:是否能够通过直接在全局地图上匹配而不分离地点来实现全局定位呢?答案是肯定的,一些方法能够实现一阶段的全局位姿估计。根据如何估计位姿,这些方法可以分为两类:传统的封闭形式或者端到端方式。

a.基于特征的匹配

一个具有代表性的工作为Dubé等人于2017年提出的SegMatch,其结果如图7所示。

在这里插入图片描述
图7|SegMatch的分割结果©️【深蓝AI】编译

SegMatch首先通过移除地面点来将稠密的激光雷达地图点分割成簇,然后基于特征值和分割形状来提取特征。它训练了随机森林分类器,并且将其应用于增强特征匹配。最后,将候选的匹配传入RANSAC算法来实现6自由度位姿估计。Cramariuc等人提出了SemSegMap,其将视觉信息集成到点云分割和特征提取中。

受到SegMatch方法的启发,Tinchev等人于2018年提出了用于自然环境中全局定位的自然分割和匹配(NSM)方法。除了SegMatch和NSM方法外,最近的工作还提出通过语义目标来实现一次全局定位。Ankenbauer等人于2023年设计了一种利用图论知识的重定位方案。该方案将观测到的语义目标与先验目标地图配准,并且在planetary rover数据集和KITTI数据集上进行验证。

b.深度回归

随着深度学习的普及,一些研究者提出了以端到端的方式直接回归机器人全局位姿。Wang等人于2021年提出了一种基于学习的PointLoc来实现激光雷达全局位姿估计。主干网络为注意力辅助的PointNet类架构。这种端到端的方式完全是数据驱动的,不需要传统的位姿估计处理。Lee等人于2022年将全局定位转化为不平衡点配准问题,并且提出了一种层次框架UPPNet来求解这个问题。具体而言,UPPNet首先在一个大型点云地图中搜索可能的子区域,然后通过在该子区域内进行局部特征匹配来实现位姿估计。

5. 连续全局定位

由于地图规模 ∣ M ∣ |M| M远大于单帧激光雷达点云的规模 ∣ z t ∣ |z_t| zt,因此单次全局定位方法无法保证在具有挑战性的场景中的定位成功率。另一方面,激光雷达提供了高频的点云测量数据,当机器人前进一段距离后,可以获得连续的点云。因此,采用多帧的测量值可以提高全局定位的性能。这部分概述了使用连续激光雷达输入来实现全局位姿估计的方法。

连续全局定位可以分为两类,分别由其地图以及地点识别和位姿估计的使用来决定。一类是基于关键帧的子地图的连续地点匹配,另一类是度量地图上的连续度量全局定位。前者将检索的地点作为定位结果,并且在基于关键帧的子地图上运行。后者估计度量地图上的精确位姿,并且通常基于全局度量地图。此外,连续度量定位通常需要后端的状态估计器来跟踪非全局定位结果,如图8所示。

在这里插入图片描述
图8|使用激光雷达的两类连续全局定位©️【深蓝AI】编译

本文将基于连续的方法也分为两类:批量处理和递归滤波。不同之处在于如何处理用于全局位姿估计的连续信息:批量方法处理批量信息,通过检索或者优化来估计整个机器人轨迹;滤波方法通过贝叶斯滤波或者类似的技术来估计位姿。表格2中展示了一些具有代表性的工作。

在这里插入图片描述
表2|激光雷达连续全局定位具有代表性的研究©️【深蓝AI】编译

5.1 连续地点识别

概率或者连续匹配有助于提高视觉定位成功率,其在一些经典的视觉系统中得以验证。Cummins和Newman提出了FAB-MAP,它首先建立了基于外观的BoW进行单帧图像检索,然后使用递归贝叶斯滤波来实现全局定位。一个扩展版本FAB-MAP 3D还对空间信息进行建模,以提高框架的鲁棒性。Milford和Wyeth于2012年提出的SeqSLAM通过序列到序列的匹配策略来寻找图像相似性矩阵中的候选地点。与基于滤波的方法相比,SeqSLAM处理一批图像,使整个系统更为鲁棒。

基于激光雷达的连续匹配方法受到视觉方法的启发。Liu等人于2019年提出使用LPD-Net进行前端地点识别,并且设计了一种由粗到精的连续匹配策略来实现全局定位。Yin等人于2022年提出了一种基于连续地点识别结果在大规模环境中实现粒子辅助快速匹配的方案。

上述所有方法旨在估计基于拓扑关键帧子地图上最可能(概率最高)的匹配。

5.2 连续度量定位

如果地图具有几何表示(例如占用栅格和路标),则它可以实现移动机器人的度量位姿估计,使连续全局定位更实用。

粒子滤波定位也称为序列蒙特卡洛定位(MCL),这是一种广泛使用的递归状态估计后端。与卡尔曼滤波器不同,MCL是非参数贝叶斯滤波,不需要假设机器人状态的分布。更具体而言,它使用一组样本表示机器人状态,这天然适合于全局定位任务,特别是当机器人位姿具有多模态分布时。研究者提出了多个扩展版本来提高原始MCL的鲁棒性和效率。Bennewitz等人利用激光数据的强度信息来改进MCL的观测模型,并且实现了重定位的快速收敛。Zimmerman等人于2022年的最新工作中还将人类可读的文本信息集成到MCL中用于定位,使其对结构变化更为鲁棒。

现代MCL方法将离散地点识别技术集成到滤波框架中,使MCL更适合大规模室外环境。Yin等人于2018年提出使用高斯混合模型来融合多个地点识别结果,然后将其集成到MCL系统中作为观测模型。类似地,Chen等人于2020年使用OverlapNet来提取全局地图中子地图的特征,并且通过比较当前特征和存储特征之间的相似性来提出一种用于MCL的新观测模型,以实现激光雷达全局定位。Chen等人于2021年提出了一种深度学习辅助的采样观测模型,称为DSOM。此外,深度学习带来的进步还影响了MCL系统的后端状态估计器。Jonschkowskiet等人于2018年设计了一种可微分的粒子滤波器(DPF)方案,用于机器人位姿跟踪和全局定位。整个DPF流程包括可微分的运动和测量模型,以及一个粒子的置信更新模型,使得DPF能够以端到端的方式训练。

目前还存在一些其它能够实现连续度量全局定位的框架。例如,多假设追踪(MHT)是全局定位问题的一种可能解决方案。Gao等人于2019年提出一种改进的MHT框架,其设计了一种新的结构单元编码方案来对假设加权。Hendrikx等人于2022年提出建立一颗用于室内全局定位的假设树,该方法需要全局特征地图,并且使用显式的数据关联来检验假设。

6. 激光雷达辅助的跨机器人定位

上述部分主要着重于基于单个机器人的激光雷达全局定位。全局定位也可以部署在多机器人系统中,以实现跨机器人定位,这是机器人界的一个新趋势。更具体而言,一个机器人执行建图,另一个机器人在该地图内全局估计其位姿,反之亦然。

6.1 激光雷达辅助的多机器人系统

实际上,多机器人系统是一个广泛的主题,涉及很多子问题,例如通信带宽和计算效率,而本文主要着重于基于关键帧的增量式跨机器人定位。表格3展示了一些具有代表性的工作。

在这里插入图片描述
表3|跨机器人定位中具有代表性的研究©️【深蓝AI】编译

在过去二十年中,人类对各种环境的自主探索和建图的需求越来越大。因此,多机器人SLAM作为一种先验地图不可用的关键解决方案,正受到越来越多的关注。最新的DARPA Subterranean(SubT)挑战赛是一项为期三年的全球比赛,其旨在展示和推进复杂地下环境中的建图、定位和探索方面的最新技术,这对改进多机器人SLAM尤为重要。挑战赛中有六个SubT团队采用了多机器人SLAM架构。尽管当时提出很多的回环方法,但是大多数团队仅仅通过计算当前关键帧和因子图中另一关键帧之间的距离来检测回环候选。

实际上,机器人往往不总是从同一地点开始执行任务,因此有必要研究不完全依赖于初始值的地点识别。He等人于2020年从子地图点云中提取障碍物轮廓,并且生成缩略图,然后通过应用NetVLAD将缩略图转换为紧凑的地点描述子。Huang等人于2021年提出的DiSCo-SLAM首次采用基于激光雷达的全局描述子和scan context,以分布式的方式进行地点识别。在相对位姿估计部分,提出了基于特征值的分割描述子来实现特征匹配。Zhong等人于2022年提出的DCL-SLAM评估了LiDAR-Iris、M2DP和scan context的性能,并且最终使用有效且具有旋转不变性的LiDAR-Iris来实现回环检测。Xu等人于2023年提出了RING++,它通过一种非学习框架来实现旋转平移不变性,同时估计3自由度位姿。图9展示了使用DCL SLAM和RING++的现实世界实验结果。

在这里插入图片描述
图9|使用DCL SLAM和RING++的定性结果©️【深蓝AI】编译

6.2 跨机器人后端

机器人间的LCD方法可以实现大规模环境中的跨机器人定位。然而,没有一种激光雷达LCD方法能够实现无假阳性的回环检测。几乎所有的跨机器人定位系统都建立在图优化框架上,这些假阳性将提供位姿节点之间不一致的连接,从而导致优化无法收敛到正确解。

解决这一问题主要有两种方式:一种是在优化前构建异常值剔除模块或者类似的技术;另一种是设计鲁棒的核函数来降低图优化中异常值的影响。这两类方法旨在提高LCD方法生成不一致边时图优化的鲁棒性。

针对第一种方式,传统上使用RANSAC来实现异常值剔除,它根据采样的数据迭代地估计模型。Olson等人于2005年提出了一种基于图论的异常值剔除方法,称为单聚类图划分(SCGP)。类似地,Carlone等人于2014年将异常值剔除转化为一个最大集合估计问题。

针对第二种方式,Sünderhauf和Protzel于2012年设计了优化中可切换的约束。添加的约束遵循不同的异常值剔除策略,它们可以打开或者关闭回环。Latif等人于2013年设计了一种迭代方法RRR,它通过聚类一致的回环来识别真阳性回环。这些鲁棒函数通常被集成到位姿图优化框架中以提高鲁棒性。除了识别回环边外,研究者还在优化中设计和使用鲁棒核,例如Gemen-McClure核、Huber核和Max-Mixture核。在实际应用中,异常值剔除和鲁棒估计器的组合使用可能是处理假阳性回环的实际选择。

7. 开放问题

首先从一个问题开始讨论:哪种是最佳的激光雷达全局定位方法呢?本文认为这是由多个关键因素来决定的:环境、地图和要求的位姿精度等。没有一种最佳的方法可以处理所有的应用和场景。用户需要根据他们的实际需求来自定义全局定位系统。目前的激光雷达全局定位技术为机器人提供了若干个重要的功能。然而,仍然存在一些尚未解决的问题和值得进一步研究的方向。

7.1 评估差异

实验验证和评估对研究论文至关重要,但是相关的论文使用不同的指标和数据集来评估它们的方法。下面,我们首先列出常用的指标,然后讨论该评估。

a.地点识别指标

度量的一个分支是评估地点检索性能。任何地点识别方法都在机器学习指标下评估全局定位性能,例如召回率@1%、准确率-召回率曲线和地点概率等。主流的指标如下:

·真阳性TP、假阳性FP和假阴性FN;

·准确率和召回率;

·准确率-召回率曲线;

·F1得分和AUC;

·召回率@N和召回率@1%。

b.位姿估计指标

其它评估指标是为位姿估计而设计的。传统的激光雷达SLAM和基于地图的定位基于旋转误差和平移误差来评估性能。这些误差是通过将估计的全局位姿与真值位姿进行定量比较而获得的。

·平移误差TE和旋转误差RE;

·成功率。

c.指标差异

对于地点识别,哪种度量指标是评估地点识别性能的最佳选择?这取决于实际情况下的任务。例如,LCD为位姿图优化提供了边,而假阳性可能会破坏后端优化。因此,对于某些LCD任务,可能需要高级别的精度。在重定位方面,召回率能够展示系统如何从初始状态定位机器人的能力。

另一方面,与其它车载传感器相比,激光雷达传感器提供了精确和稳定的距离测量。更重要的是,在自主导航的经典方案中,下游规划任务和控制模块需要精确的位姿状态。因此,地点检索并不是激光雷达全局定位问题的最终目标,而位姿估计指标更有意义,其取决于具体任务。对于平面移动机器人,3自由度位姿估计可能足以用于LCD和重定位,如果需要,也可以使用6自由度位姿估计。

d.长期评估

另一个重要而有意义的主题是长期全局定位的评估。对于基于地点识别的方法,传统的指标可能不足以进行性能评估,因为它们主要着重于短期检索性能。Cui和Cheng等人于2023年开创性的工作提出了在不同季节和城市进行激光雷达地点识别持续学习的解决方案。

e.公开数据集

表格4展示了与激光雷达全局定位有关的具有代表性的数据集。

在这里插入图片描述
表4|激光雷达全局定位数据集©️【深蓝AI】编译

本文从场景、挑战和视角多样性等角度对这些数据集进行汇总和评估。通常,不同数据集涵盖了实验条件和挑战,这里建立用户根据实际需要来选择合适的数据集进行性能评估。

7.2 多模态

现代移动机器人配备了多个传感器用于自定位。近年来,多模态感知一直是热门主题。不同的模态给跨模态全局定位带来直接挑战。但是另一方面,每种传感器的模态都有其优势和劣势,传感器模态融合能够提高定位的可靠性和鲁棒性。

a.跨模态

当离线建图和在线定位中使用不同的传感器模态时,称之为跨模态定位。Cattaneo等人于2020年联合训练2D图像和3D点地点识别。类似地,Yin等人于2021年将雷达和激光雷达融合起来,用于基于BEV的地点识别。OpenStreetMap(OSM)是一种包括道路结构和建筑信息的地图。Cho等人于2022年将人工设计的激光雷达描述子与OSM描述子相匹配,以实现地点识别。对于度量定位,Yan等人提出了一种4位的表示,其能够测量激光扫描与OSM之间的汉明距离,然后通过这些距离来建立MCL的观测模型。总体而言,这些研究工作是要建立能够连接不同数据模态的低维表示。

b.模态融合

另一个方向是基于多种模态来建立传感器融合模块。Ratz等人于2020年验证了,相比于仅使用激光雷达的描述子,激光雷达-视觉分割描述子实现了更好的性能。受此启发,Pan等人于2021年提出了Coral,其通过融合有颜色的视觉特征和结构化的激光雷达高程图来设计一种双模态地点识别方法。Lai等人于2022年提出了AdaFusion,其使用注意力方案来加权用于地点识别的视觉和激光雷达模态。总体而言,多模态融合有助于提高地点识别的性能,但是需要额外的学习技术或者训练数据来融合不同的模态。

c.高级语义

原始激光雷达点云是无纹理且不规则的。这限制了高级机器人应用,例如场景理解和移动目标检测。Behley等人于2019年发布了一个大型语义激光雷达数据集,称为SemanticKITTI,其中包含了逐点标注的激光雷达扫描数据和用于道路自主导航的多个语义相关的基准。SemanticKITTI着重于道路机器人感知任务。此外,还存在一个越野语义激光雷达数据集,称为RELLIS-3D,它为机器人研究提供了一整套多模态传感器数据。激光雷达的语义信息有利于全局定位的地点识别和位姿估计。除了点级语义外,Xie等人于2023年的最新研究还将自然语言描述子集成到激光雷达地点识别中,使机器人从语义上理解环境。

7.3 较少重叠

尽管激光雷达扫描仪对环境感知较为强大,但是实际上应用激光雷达全局定位仍然存在潜在挑战:在某些情况下,两个激光雷达点云之间的重叠可能非常小。对于全局定位问题,点云可以是两帧扫描数据或者用于地点检索的子地图。较少的重叠将使地点识别或者位姿估计技术更具挑战性。

a.动态物体遮挡

在高度动态环境中,激光雷达扫描数据会被动态物体部分遮挡,例如机器人周围的行人和车辆。更具体而言,对于旋转的激光雷达传感器,遮挡区域主要由两个因素决定:动态物体和传感器之间的距离以及动态物体的大小。迄今为止,有效且高效去除激光雷达扫描数据中的动态物体仍然相当困难。与360度旋转的激光雷达相比,一些其它测距传感器可以提供不易遮挡的数据,例如成像雷达等。

b.巨大平移

对于基于关键帧的稀疏子地图而言,检索的关键帧和真值位姿之间的巨大平移可能导致当前激光雷达扫描数据和关键帧存储的子地图之间存在较小重叠,这需要强大的全局点云配准来克服这一挑战。

c.视角变化

通常,对于道路上的机器人,位姿估计限制在3自由度空间中。而对于无人机而言,这是一个6自由度位姿估计问题。在无人机上使用激光雷达全局定位时,无人机采集的激光雷达点云在同一地点处的重叠区域可能很小。这主要由两个因素导致:无人机的6自由度运动和激光雷达传感器的有限视角。

7.4 不平衡匹配

大多数激光雷达定位方法都使用相对良好的数据质量进行验证。换而言之,输入点云和点云地图具有相似的分布和相同的表示。然而,在实际情况中,输入和地图往往是不平衡的。这里列出了三种典型考虑因素:

a.扫描到子地图

基于关键帧的地图是一种在大规模场景使用的主流地图。当定位失败时,将单帧扫描数据与子地图进行全局匹配对于重定位移动机器人是关键步骤。然而,与单帧激光雷达扫描数据相比,激光雷达点云子地图通常具有更大的规模。传统的匹配方法需要调整参数和阈值来处理这些情况。对于基于学习的方法,不平衡点匹配仍然难以解决。

b.表示差异

除了点云外,还存在其它的度量地图表示。通常,多个表示被集成到导航范式中,例如点云地图中定位和栅格地图上规划。为了简化地图的使用,一个潜在的方向是为导航建立统一的表示,并且需要不平衡数据来克服表示差异。

c.带有噪声的激光雷达

激光雷达传感器在具有挑战性的条件下将会受到影响,从而导致原始激光雷达数据带有噪声。这些噪声不利于机器人感知和状态估计。处理噪声对于确保导航系统的安全性和鲁棒性是非常重要的。

7.5 效率和可扩展性

在基于激光雷达的定位任务中,效率和可扩展性是重要的考虑因素。然后,当前的方法不能有效地解决大规模环境中基于激光雷达的定位问题,其中一个原因是激光雷达数据的固有特性,即数据通常较大且维度较高。另一方面,从激光雷达数据中生成并且实时更新精确地图是复杂的,特别是在动态变化的大规模环境中。

Wiesmann等人于2021年提出对点云进行压缩,这可能是降低大规模环境对激光雷达地图存储需求的一种具有前景的方式。然而,当使用这种压缩地图进行6自由度定位时,目前的方法需要额外的解压缩步骤,这就需要在存储和速度之间进行权衡。

7.6 泛化能力

对于无学习的方法,需要较少的参数调整来确保对新环境的泛化。对于基于学习的方法,泛化能力是一个需要面临的巨大挑战。本文列出了部署现有全局定位方法时遇到的基本问题。

a.传感器配置

目前,激光雷达有几十种类型,每种类型都有其独特的传感器参数。从一个激光雷达到另一激光雷达的泛化可能是一个问题。另一个问题是激光雷达传感器的位移,如果传感器的横滚角或者俯仰角发生变化,激光点的密度和分布将分别发生变化,这将导致全局定位失败。

b.未见过的环境

对未见过场景的泛化是一个古老但难以解决的问题。Knights等人于2023年发布了一个具有挑战性的数据集Wild-Places,用于自然环境中的激光雷达地点识别。与城市环境中的测试相比,先进的方法的性能有所下降。因此,结构化城市环境和非结构化自然环境之间存在差异。为了在新场景中实现持续学习,增量学习是一个很好的选择。Knights等人于2022年提出了InCloud,其实现了点云地点识别的增量学习。

c.全局定位的触发因素

在一个完整的定位系统中,位姿跟踪占用了大部分计算,而全局定位仅在需要时触发。对于LCD和跨机器人定位,全局定位的触发因素可以是一个或者多个预定义的标准,例如Denniston等人提出的描述子相似性阈值或者自适应距离。对于重定位应用,检测到定位失败可能是全局定位的触发条件。

8. 总结

由于全局定位在移动机器人应用中的关键作用,近年来引起了研究者的广泛关注。越来越多的激光雷达传感器的创新研究促进本文对激光雷达全局定位问题的全面调研。本项调研旨在整合现有的最先进技术,同时确定未来的研究问题。

本项综述首先从概率的角度描述问题。然后考虑实际应用中的情况:回环检测、重定位和跨机器人定位。这一初步分析为理解相关问题提供了基础,并且将各种方法定位在其适当的范围内。接着,将内容的结构分为三个主题:第一个主题深入研究了全局地点检索和局部位姿估计,探索了这两个概念如何在全局定位的背景下相互作用;第二个主题介绍了从单次测量到连续测量的演变,强调了这种演变如何提高连续全局定位;第三个主题拓宽了范围,考虑从单一机器人全局定位扩展到多机器人系统中的跨机器人定位,并且强调了这一新兴领域的复杂性和机遇。

本文认为全局定位仍有很多具有前景的研究方向。除了问题本身,将全局定位集成到导航系统也是一个有价值的研究主题。

编译|auto_driver

审核|Los

移步公众号【深蓝AI】,第一时间获取自动驾驶、人工智能与机器人行业最新最前沿论文和科技动态。

  • 12
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值