事件相机的数据集与仿真器

本文转载自此微信推送,作者即博主

0、为什么需要数据集与仿真器?

在研究中,为了比较不同算法的优劣,研究人员不能用自己采集的数据,这样和别的方法比较没有太大的意义。所以公开的数据集是评价这些方法的通用数据。而仿真器,是按照事件相机的成像原理,模拟其生成数据的样子,可以便于使用者采集自己想要的数据。

当然最重要的一点,是事件相机目前价格较高,许多人无法像买USB相机这样随性购买。下面我们简单看几家公司的商品和售价:
在这里插入图片描述

(图:一些事件相机厂商的主流产品与价格,数据由个人业务咨询获得)

可以看到一款事件相机动辄几万。所以数据集和仿真器可以极大程度方便研究的进行,同时避免了硬件使用过程中的各种各样的问题。

1、数据集

在github官网整理出了许多数据集,更多细节请参考网址:https://github.com/uzh-rpg/event-based_vision_resources#datasets。包括的数据集有:光流、图像恢复、VO与SLAM、图像分割、图像识别等。下面介绍一些围绕SLAM的数据集。

ViViD: Vision for Visibility Dataset

提供Lidar,RGBD,EB,IMU等数据,室内:光照亮好/局部光照/没有光照+稳定运动/不稳定运动/极其不稳定运动,室外:白天/夜间,标定等数据,下载需要申请。

UZH-FPV Drone Racing Dataset

FPV飞机拍摄的室内/室外高速运动的场景

VSEC: The Multi Vehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception, 2018

车载传感器,道路场景,配合有lidar/IMU等传感器,同时是少见的双目事件相机数据

DDD17: DAVIS Driving Dataset 2017

车辆驾驶场景,高速路,包括速度/GPS等多种传感器数据;

DDD17+: 未发布,在准备论文。比DDD17多一些数据量。

伴随论文“Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization”公开的数据,主要为室内场景,包括EB和RGBD,IMU。除此之外,还有少量的仿真和模拟数据。同时也是Gallego等人在PAMI 2018发表的Event-Based, 6-DOF Camera Tracking from Photometric Depth Maps论文使用的数据集
在这里插入图片描述
(图:DAVIS 240C Datasets部分数据。提供text和rosbag两种格式)

这里重点介绍一款SLAM数据集,DAVIS 240C Datasets,伴随论文“The Event-Camera Dataset and Simulator: Event-based Data for Pose Estimation, Visual Odometry, and SLAM”公开的数据集。

包括室内/室外/办公室/盒子/几何形状/室外行走/旋转等多段数据,个人认为是较为合适的通用场景的数据集,也是后续许多事件相机所采用的数据集,被后面的论文中描述为:introduced as a benchmark for event-based visual (inertial) odometry。同时里面的仿真器,是仿真器ESIM的早期工作(采用的是高速定频采样)。而ESIM采用了根据变化速率改变采样速率的方式,更加贴近真实情况(详见第3节和相关论文)。主要提供了两种数据格式:便于ROS下运行的.bag格式,与更普遍的.zip文件(包含最基础的数据event和image数据)。官方链接:http://rpg.ifi.uzh.ch/davis_data.html

2、数据集的运行

这里介绍两款数据集运行的软件,基于java环境的jAER与基于ROS环境的rpg_dvs_ros。

jAER

jAER是基于java环境的一款软件,可以读取一些格式的数据集,安装配置需要安装java的运行环境,同时支持windows和linux。我个人尝试配置,总是会遇到各种问题,无论是windows还是linux都没配置成功。不建议使用。如感兴趣请访问:github:https://github.com/SensorsINI/jaer

rpg_dvs_ros

这个是ETH的Robotic and Perception Group开发的ROS环境下的运行软件,可以配套运行ETH许多开源的代码,感觉做得还算不错,可以考虑安装使用。具体安装方法参考github即可:https://github.com/uzh-rpg/rpg_dvs_ros

注意一点,ubuntu18安装的ROS为melodic,在执行上述链接的指令时,需要将catkin config这一句进行替换,否则可能会遇到问题。具体的替换内容参考了rpg_esim的wiki:https://github.com/uzh-rpg/rpg_esim/wiki/Installation-(ROS-Melodic)

3、仿真器

仿真器是“模拟事件相机生成数据方式”的软件,既然是模拟,那肯定与真实的不一样,但好歹可以尽可能的像。这里大力推荐ETH的ESIM。ESIM也是基于ROS环境。
在这里插入图片描述
(图:(a)之前仿真器采集原理vs (b)ESIM采集原理。ESIM采用自适应采用方式采集数据,使变化速度快的时刻采样快,尽可能的保证了数据不丢失)

ESIM的源码,参考github:https://github.com/uzh-rpg/rpg_esim

安装过程也参考github上的wiki即可:https://github.com/uzh-rpg/rpg_esim/wiki/Installation
在这里插入图片描述
(图:ESIM仿真器运行环境)

除此之外,补充介绍两个仿真器,但不推荐使用。

一个是2012年的论文“Live demonstration: Behavioural emulation of event-based vision sensors”中提出的一款实时将USB相机数据转化为事件数据的仿真器,鉴于时间较早,不建议首先使用。

其次是“Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes dataset”中构建的仿真器,这个仿真器极其强大,创建了上万种真实场景的三维模型,能够生成单目、双目、RGBD、事件相机等多种数据,但毕竟不是专业做事件相机的仿真器,随便看看就好。

4、结语

ETH做了大量的在数据集、运行环境与仿真器方面的工作,从公开的代码来看,基本都采用了ROS环境。所以个人建议,一律采用ROS环境进行研究,方便使用前人的工作。

<think>好的,我现在需要帮助用户寻找避障相关的数据集,特别是障碍物检测或避障算法所需的数据集下载资源。首先,我需要理解用户的具体需求。用户提到了“障碍物检测 数据集”或“避障 算法 数据集”,可能是在寻找用于训练或验证避障算法的数据集,这些数据集可能包含各种传感器数据,如图像、激光雷达(LiDAR)数据、雷达(Radar)数据等,以及障碍物的标注信息。 接下来,我应该回忆一下常见的公开数据集,尤其是机器人导航、自动驾驶领域常用的数据集。例如,KITTI数据集是一个广泛使用的自动驾驶数据集,包含相机图像、LiDAR数据,并且有目标检测、跟踪等任务的标注。还有NuScenes数据集,同样用于自动驾驶,提供了多模态传感器数据。此外,TUM数据集可能适用于机器人导航,包含RGB-D相机的数据。 然后,用户可能对合成数据集感兴趣,因为引用[4]提到了合成数据集在工业应用中的优势。例如,CARLA是一个开源的自动驾驶模拟器,可以生成合成数据。AirSim由微软开发,也支持生成带有标注的合成数据,适用于避障算法的训练。 我还需要考虑数据集的获取方式。大多数公开数据集可以直接从官方网站下载,但可能需要注册或同意许可协议。合成数据集可能需要通过仿真环境生成,用户需要安装相应的软件工具。 另外,用户可能需要数据集的多样性,包括不同的环境(城市、室内、室外)、不同类型的障碍物(车辆、行人、静态障碍物等),以及不同的传感器数据格式。因此,在推荐数据集时,应涵盖这些方面,并简要说明每个数据集的特点和适用场景。 还需要注意引用用户提供的参考文献,比如引用[3]提到的YOLOv5用于障碍物检测,可以推荐包含图像和标注的数据集,如COCO或KITTI,这些适合训练目标检测模型。引用[2]讨论了目标追踪公式,可能需要包含动态障碍物追踪的数据集,如NuScenes或Waymo Open Dataset,这些提供时间序列的数据。 最后,整理这些信息,分点列出每个数据集的名称、简介、适用场景和获取方式,确保结构清晰,方便用户查找和下载。同时,提醒用户注意数据集的使用许可,遵守相关规定。</think>### 避障相关数据集推荐 以下是适用于障碍物检测和避障算法的公开数据集,涵盖真实场景和合成数据: --- #### **1. KITTI 数据集** - **简介**:面向自动驾驶的经典数据集,包含相机图像、LiDAR点云、GPS/IMU数据,标注了车辆、行人、自行车等障碍物的3D边界框[^3]。 - **适用场景**:目标检测、路径规划、动态避障。 - **获取方式**:官网下载(需注册):[KITTI Dataset](http://www.cvlibs.net/datasets/kitti/) --- #### **2. NuScenes 数据集** - **简介**:多模态数据集,提供摄像头、LiDAR、雷达、GPS等数据,包含1000个驾驶场景的标注,支持障碍物追踪行为预测[^2]。 - **适用场景**:动态避障、多传感器融合算法验证。 - **获取方式**:官网申请:[NuScenes](https://www.nuscenes.org/) --- #### **3. TUM RGB-D 数据集** - **简介**:基于RGB-D相机的室内场景数据集,包含深度图像和真实轨迹,适用于机器人导航静态避障研究[^1]。 - **适用场景**:室内SLAM(同步定位地图构建)、避障路径规划。 - **获取方式**:官网下载:[TUM Dataset](https://cvg.cit.tum.de/data/datasets/rgbd-dataset) --- #### **4. CARLA 合成数据集** - **简介**:开源自动驾驶仿真平台,支持自定义场景生成,可导出带标注的相机图像、LiDAR数据[^4]。 - **适用场景**:算法仿真测试、合成数据训练避障模型。 - **获取方式**:GitHub下载仿真器:[CARLA](https://carla.org/) --- #### **5. Waymo Open Dataset** - **简介**:大规模自动驾驶数据集,涵盖复杂城市道路场景,提供高精度3D障碍物标注追踪信息。 - **适用场景**:动态障碍物预测、避障决策优化。 - **获取方式**:官网申请:[Waymo Dataset](https://waymo.com/open/) --- #### **6. AirSim 合成数据** - **简介**:微软开发的无人机/车辆仿真环境,支持生成带语义分割、深度信息的合成数据[^4]。 - **适用场景**:低成本的避障算法训练验证。 - **获取方式**:GitHub下载工具:[AirSim](https://microsoft.github.io/AirSim/) --- ### 数据集选择建议 - **真实数据**:优先选择KITTI、NuScenes,适合实际场景算法验证。 - **合成数据**:CARLA或AirSim可快速生成多样化的训练数据,弥补真实数据不足。 - **学术用途**:TUM数据集适合室内机器人研究,Waymo适合复杂动态场景分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值