PCL预处理Filtering

本文介绍了PCL库中的点云预处理Filtering技术,包括PassThrough filter进行轴向截断,VoxelGrid filter实现降采样,StatisticalOutlierRemoval滤除异常值,通过参数化模型投影点以及使用Conditional或RadiusOutlier removal策略删除异常点。这些方法有助于提升点云数据的质量和后续处理效率。
摘要由CSDN通过智能技术生成

常用Filtering

PassThrough filter

沿着指定的维度执行简单的过滤,即截断给定用户范围内或外部的值(x、y、z)。

  pcl::PassThrough<pcl::PointXYZ> pass;
  pass.setInputCloud (cloud);
  pass.setFilterFieldName ("z"); //z轴方向的过滤
  pass.setFilterLimits (0.0, 1.0); //基于点云原点的0-1m
  //pass.setFilterLimitsNegative (true);
  pass.filter (*cloud_filtered);

VoxelGrid filter

使用体素化网格方法缩小点云数据集的采样(降采样)

  pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
  sor.setInputCloud (cloud);
  sor.setLeafSize (0.01f, 0.01f, 0.01f);创建格子大小为1cm的体素网格过滤器
  sor.filter (*cloud_filtered);

StatisticalOutlierRemoval filter

用于移除异常值
使用统计分析技术从点云数据集中移除噪声测量

//所有与查询点的平均距离的标准差大于1的点都将被标记为异常值并被删除
  pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;
  sor.setInputCloud (cloud);
  sor.setMeanK (50);//每个点要分析的邻居数设置为50
  sor.setStddevMulThresh (1.0);//标准差乘数设置为1
  sor.filter (*cloud_filtered);

Projecting points using a parametric model

将点投影到参数化模型(例如,平面、球体等)上。参数模型是通过一组系数给出的,在平面的情况下,通过方程:ax+by+cz+d=0。

  // Create a set of planar coef
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值