
概率图模型
概率图模型
u013250861
这个作者很懒,什么都没留下…
展开
-
机器学习-算法-有监督学习:EM(最大期望值算法)<=> MLE(最大似然估计法)【关系类似“梯度下降法”<=>“直接求导法”】【EM&“梯度下降”:先初始化一个随机值,然后通过迭代不断靠近真实值】
最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM)等等。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的参数估计值被用于下一.原创 2020-11-26 20:57:40 · 958 阅读 · 0 评论 -
变分自编码器(VAE,Variational Auto-Encoder)
生成模型的难题就是判断生成分布与真实分布的相似度,因为我们只知道两者的采样结果,不知道它们的分布表达式。KL 散度是根据两个概率分布的表达式来算它们的相似度的,我们只有样本本身,没有分布表达式,当然也就没有方法算 KL 散度。变分自编码器(Variational auto-encoder,VAE)是一类重要的生成模型(Generative Model)VAE 跟 GAN 比较,目标基本是一致的——希望构建一个从隐变量 Z 生成目标数据 X 的模型,但是实现上有所不同。原创 2022-09-05 18:34:52 · 408 阅读 · 0 评论 -
极大似然估计(MLE)、最大后验估计(MAE)
极大似然估计(Maximum likelihood estimation, 简称MLE)也称最大似然估计。是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。极大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。原创 2022-09-05 17:17:34 · 1731 阅读 · 0 评论 -
数理统计(二)-参数估计:点估计【矩估计法、最大似然估计法(似然函数、对数似然函数、牛顿-拉弗森迭代算法、拟牛顿迭代算法)】、区间估计【双侧置信区间、单侧置信区间、置信水平、枢轴量、枢轴量的分布】
1 点估计2 基于截尾样本的最大似然估计3 估计量的评选标准4 区间估计5 正态总体均值与方差的区间估计6 (0-1)分布参数的区间估计7 单侧置信区间原创 2020-11-12 23:36:00 · 667 阅读 · 0 评论 -
蒙特卡洛(MCMC)算法(马尔科夫-蒙特卡洛):通过“统计方法”来模拟推定“未知特性量”的计算方法【MCMC采样-->M-H采样-->Gibbs采样】
20世纪40年代,在冯·诺伊曼,斯塔尼斯拉夫·乌拉姆和尼古拉斯·梅特罗波利斯在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡罗方法。因为乌拉姆的叔叔经常在摩纳哥的蒙特卡洛赌场输钱得名,而蒙特卡罗方法正是以概率为基础的方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。1940年代中期由于科学技术的发展和电子计算机的发明。而提出的一种以概率统计理论为指导的数值计算方法。蒙特卡罗方法也称 统计模拟 方法。.........原创 2022-08-05 10:19:21 · 425 阅读 · 0 评论 -
蒙特卡洛算法
蒙特卡罗方法(Monte Carlo method),也称 统计模拟方法。蒙特卡洛方法的理论基础是大数定律。大数定律是描述相当多次数重复试验的结果的定律,在大数定理的保证下:所以只要设计一个随机试验,使一个事件的概率与某未知数有关,然后通过重复试验,以频率近似值表示概率,即可求得该未知数的近似值。此种方法可以求解微分方程,求多重积分,求特征值等。参考资料:经典算法:蒙特卡洛方法(MCMC)蒙特卡洛方法(入门详解)...原创 2022-06-28 23:55:30 · 331 阅读 · 0 评论