
RS/序列推荐
sequential recommendation
u013250861
这个作者很懒,什么都没留下…
展开
-
推荐模型-序列推荐-2010:FPMC
推荐模型-序列推荐-2010:FPMC。原创 2022-11-27 16:52:14 · 266 阅读 · 0 评论 -
推荐模型-序列推荐-2015:HRM
推荐模型-序列推荐-2015:HRM。原创 2022-11-27 17:26:19 · 153 阅读 · 0 评论 -
推荐模型-序列推荐-2016:FOSSIL
推荐模型-序列推荐-2016:FOSSIL。原创 2022-11-27 16:42:28 · 315 阅读 · 0 评论 -
推荐模型-序列推荐-2016:GRU4Rec、GRU4RecF、GRU4RecKG
推荐模型-序列推荐-2016:GRU4Rec。原创 2022-11-27 16:54:18 · 473 阅读 · 0 评论 -
推荐模型-序列推荐-2017:TransRec
推荐模型-序列推荐-2017:TransRec。原创 2022-11-28 10:18:50 · 256 阅读 · 0 评论 -
推荐模型-序列推荐-2017:NARM
推荐模型-序列推荐-2017:NARM。原创 2022-11-28 10:17:18 · 329 阅读 · 0 评论 -
推荐模型-序列推荐-2018:DIN(Deep Interest Network)【引入Attention机制】【阿里】
Deep Interest Network(DIN)模型由阿里巴巴2018年发表在KDD 2018会议上。本文的主要动机是,将NLP中机器翻译的Attention机制引入CTR预估模型中,即在计算用户兴趣向量的时候,根据候选广告的不同从而动态的改变用户兴趣向量的值:计算候选广告与用户历史交互的个商品计算Attention权重,然后将个商品向量加权平均得到用户兴趣向量。..................原创 2022-08-06 00:06:14 · 344 阅读 · 0 评论 -
推荐模型-序列推荐-2018:STAMP
推荐模型-序列推荐-2018:STAMP。原创 2022-11-28 10:18:40 · 197 阅读 · 0 评论 -
推荐模型-序列推荐-2018:SHAN
推荐模型-序列推荐-2018:SHAN。原创 2022-11-28 10:18:24 · 254 阅读 · 0 评论 -
推荐模型-序列推荐-2018:NPE
推荐模型-序列推荐-2018:NPE。原创 2022-11-28 10:17:34 · 114 阅读 · 0 评论 -
推荐模型-序列推荐-2018:KSR
推荐模型-序列推荐-2018:KSR。原创 2022-11-28 10:17:11 · 189 阅读 · 0 评论 -
推荐模型-序列推荐-2018:SASRec、SASRecF
推荐模型-序列推荐-2018:SASRec。原创 2022-11-28 10:18:00 · 343 阅读 · 0 评论 -
推荐模型-序列推荐-2018:Caser
推荐模型-序列推荐-2018:Caser。原创 2022-11-27 16:39:16 · 268 阅读 · 0 评论 -
推荐模型-序列推荐-2019:RepeatNet
推荐模型-序列推荐-2019:RepeatNet。原创 2022-11-28 10:17:33 · 169 阅读 · 0 评论 -
推荐模型-序列推荐-2019:NextItNet
推荐模型-序列推荐-2019:NextItNet。原创 2022-11-28 10:17:29 · 321 阅读 · 0 评论 -
推荐模型-序列推荐-2019:HGN
推荐模型-序列推荐-2019:HGN。原创 2022-11-27 17:25:07 · 291 阅读 · 0 评论 -
推荐模型-序列推荐-2019:GCSAN
推荐模型-序列推荐-2019:GCSAN。原创 2022-11-27 16:53:00 · 268 阅读 · 0 评论 -
推荐模型-序列推荐-2019:FDSA
推荐模型-序列推荐-2019:FDSA。原创 2022-11-27 16:41:40 · 359 阅读 · 0 评论 -
推荐模型-序列推荐-2019:SRGNN
推荐模型-序列推荐-2019:SRGNN。原创 2022-11-28 10:18:40 · 308 阅读 · 0 评论 -
推荐模型-序列推荐-2019:DIEN【DIEN相比较DIN多了个E(Evolution),即兴趣的进化转移】【阿里】
如果我们只是单单通过用户历史行为数据与当前候选广告的交互来提取出用户兴趣信息是远远不够的,因为在用户历史行为特征数据中包含的用户兴趣点往往不仅只有一个,而且兴趣点之间存在一定的依赖性,即用户兴趣变化趋势信息或者用户历史行为时序信息并没有被利用。DIN模型虽然能通过用户历史行为特征数据在一定程度上挖掘出了用户兴趣信息,但是在业务上仍然存在一定的不足之处。因此DIEN模型提出的背景就是为了解决利用用户历史行为数据中的用户兴趣变化趋势信息从而进一步提升预测的效果。......原创 2022-08-06 00:11:46 · 229 阅读 · 0 评论 -
推荐模型-序列推荐-2019:BERT4Rec
推荐模型-序列推荐-2019:BERT4Rec。原创 2022-11-27 16:38:19 · 247 阅读 · 0 评论 -
推荐模型-序列推荐-2020:S3Rec
推荐模型-序列推荐-2020:S3Rec。原创 2022-11-28 10:17:38 · 259 阅读 · 0 评论 -
推荐模型-序列推荐-2021:SINE
推荐模型-序列推荐-2021:SINE。原创 2022-11-28 10:18:35 · 289 阅读 · 0 评论 -
推荐模型-序列推荐-2021:LightSANs
推荐模型-序列推荐-2021:LightSANs。原创 2022-11-28 10:17:17 · 284 阅读 · 0 评论 -
推荐模型-序列推荐-2022:CORE
推荐模型-序列推荐-2022:CORE。原创 2022-11-27 16:40:22 · 302 阅读 · 0 评论