
NLP/IE-“实体&关系”联合抽取
文章平均质量分 52
SPO三元组联合抽取:①级联式;②Tabel Filling式
u013250861
这个作者很懒,什么都没留下…
展开
-
关系抽取:概述
上面说的是关系抽取这个任务的一些场景问题及现在模型存在的误差问题。实体与关系共享同一个encoder网络编码,解码仍然是两个decoder,本质上是采取pipline的编码方式,即是先解码出实体,再去解码关系,这种方式是存在误差累积的。在解决关系抽取这个任务时,按照模型的结构分为两种,一种是Joint Model,另一种是Pipline, 这个大家应该比较熟悉了,其实可以把它在细化一下。下面以关系抽取的存在场景问题以及模型本身存在的问题,来看这个关系抽取这个任务存在哪些问题。原创 2022-10-22 16:27:41 · 704 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-结构化预测-2014:Modeling Joint Entity and Relation Extraction with Table Representa
Modeling Joint Entity and Relation Extraction with Table Representation原创 2022-10-25 11:09:12 · 235 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-结构化预测-2017:End-to-End Neural Relation Extraction with Global Optimization
End-to-End Neural Relation Extraction with Global Optimization原创 2022-10-25 11:06:20 · 197 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-多任务学习-2019:spERT【采用分类的思想实现联合抽取,实体抽取和关系抽取模型均为分类模型】
论文题目:Span-based Joint Entity and Relation Extraction with Transformer Pre-trainin论文链接:https://arxiv.org/abs/1909.07755论文代码:https://github.com/markus-eberts/spertSpERT模型是联合式抽取模型,同时抽取实体和关系。SpERT模型采用分类的思想实现联合抽取,实体抽取和关系抽取模型均为分类模型。SpERT模型是Span-based Joint Entit原创 2022-12-05 23:11:49 · 656 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-级联结构-2019:CasRel【抽取关系三元组的级联二元标注框架】【解决了SEO、EPO问题】【将关系作为主语到宾语的映射函数】
根据不同的重叠情况将句子划分 为三种类型。Normal表示三元组之间无重 叠;EPO(Entity Pair Overlap)表 示三元组之间共享同一个实 体对SEO(Single Entity Overlap) 表示三元组之间仅共享一个 实体。注意在某些复杂的情 况下,一个句子可能既是 EPO类型,同时也是SEO类型1 .很少研究关注三元组重叠问题2 .为三元组重叠提出一种新的关系抽取框架3 .实验结果表明该方法是有效的,在NYT和WebNLG数据集上取得较好的效果新的标注策略。原创 2021-09-07 23:07:56 · 3833 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-结构化预测-2020:Two are better than one
NLP-实体&关系联合抽取-TableFlling-2020:Two are better than one。原创 2022-10-25 11:03:36 · 188 阅读 · 0 评论 -
NLP-实体&关系联合抽取-2021:GPLinker
(即subject, predicate, object)的抽取,但落到具体实现上,它实际是“五元组”这是长度的四次方级别的计算量,实际情况下难以实现,所以必须做一些简化。然而,直接枚举所有的五元组数目太多,假设句子长度为。的约束,所有五元组的数目也有。关系抽取乍看之下是三元组。原创 2022-10-22 17:04:20 · 2030 阅读 · 0 评论 -
NLP-信息抽取-三元组-Pipeline-2021:PURE【解决SEO/EPO/SOO问题】【引入Typemarked思想,集中于一对实体对关系的语义】【存在误差传递和暴露偏差问题】
PURE使用了Pipeline的抽取框架,分别设计训练实体抽取模型和关系抽取模型。原创 2023-02-21 11:10:01 · 477 阅读 · 0 评论 -
NLP-信息抽取-三元组-Pipeline-2021:PRGC【解决SEO/EPO/SOO问题;计算效率较CasRel有很大提升】【仍存在误差传递和暴露偏差问题】
PRGC是针对CasRel模型和TPLinker模型存在的问题进行改进的,上面也提到了CasRel由于关系冗余使得很多操作无效,它的subject-object对齐提取机制使其一次只能处理一个subject,实际上效率低并难以部署应用;而TPLinker仍然存在关系冗余和扩展性差的问题,同时TPLinker使用了更复杂的解码部分导致解码的标签稀疏和收敛速度慢。原创 2023-02-21 11:06:35 · 786 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-TabelFilling-2021:GRTE【解决SEO/EPO/SOO问题】【挖掘全局特征】【填表策略减少了填表数目,减少了冗余的信息】【缺点:解码推断效率低】
《原始论文: A Novel Global Feature-Oriented Relational Triple Extraction Model based on Table Filling》原创 2022-12-05 22:49:59 · 626 阅读 · 0 评论 -
NLP-实体&关系联合抽取-2021:UniRE
由于pipeline方法不能共享实体抽取和关系抽取的信息,因此作者为了促进两个任务的交互提出了一种可以共享标签空间的方法。作者采用表填充的方法实现,具体来说:输入一张s × s s\times ss×s大小的表,这张表包含一个句子中所有的单词对,实体和关系由表格中的正方形和矩形表示(实体:实体内部所有字符都是相同的实体类型标签例如PER;关系:有关系的两个实体的字符都有相同的关系标签),实体都在对角线,关系在非对角线。作者实现了SOTA并且只用了一半的参数,而且速度更快。原创 2022-10-24 18:02:59 · 589 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-TabelFilling-2022:OneRel【单模块、单步解码的实体关系联合抽取方法】【直接识别三元组、更好捕获三元组间的相互依赖】【只有N个矩阵】
实体关系抽取算是这两年比较火热的NLP任务之一,熟悉JayJay的同学们都知道,JayJay一直比较关心关系抽取的进展。过去的2年,关系抽取的SOTA也一直被追逐赶超、不断更新,总以为可以告一段落了,没想到还可以继续奏乐、继续卷~今天要介绍这篇的paper是来自AAAI2022的《OneRel: Joint Entity and Relation Extraction with One Module in One Step》,再一次刷新SOTA。这篇paper认为当前众多的实体关系联合抽取方法需要分解为多个原创 2022-12-05 23:01:00 · 515 阅读 · 0 评论 -
NLP-信息抽取-三元组-联合抽取-Prompt-2022:UIE(通用信息抽取模型)【第四范式】【信息抽取{实体关系抽取、中文分词、精准实体标。情感分析}、文本纠错、问答系统、闲聊机器人、定制训练】
该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。为了方便大家使用UIE的强大能力,PaddleNLP借鉴该论文的方法,基于ERNIE 3.0知识增强预训练模型,训练并开源了首个中文通用信息抽取模型UIE。该模型可以支持不限定行业领域和抽取目标的关键信息抽取,实现零样本快速冷启动,并具备优秀的小样本微调能力,快速适配特定的抽取目标。原创 2022-06-28 23:54:46 · 4147 阅读 · 0 评论 -
数据集-实体&关系抽取:SCIERC语料格式解读
【代码】数据集-实体&关系抽取:SCIERC语料格式解读。原创 2022-10-22 21:11:55 · 942 阅读 · 0 评论 -
关系抽取-常见问题-Overlap:SEO(SingleEntity, 一实体与多个实体有关系)、EPO(EntityPair,同一对实体有多种关系)、HTO(HeadTail,头尾实体有嵌套/重叠)
SEO(SingleEntityOverlap, 一个实体与多个实体有关系)、EPO(EntityPairOverlap,同一对实体有多种关系)、HTO(HeadTailOverlap,头尾实体有嵌套/重叠)原创 2022-09-25 21:33:21 · 1795 阅读 · 1 评论 -
CCKS22通用信息抽取---One Model to Solve All Task
不局限于传统的单任务信息抽取的评测范式,而是将多种不同的信息抽取任务用统一的通用框架进行描述,着重考察相关技术方法在面对新的、未知的信息抽取任务与范式时的适应与迁移能力,从而满足当下信息抽取领域快速迭代、快速迁移的实际需求,更贴近实际业务应用。评论: 非常贴合 实际业务,业务信息抽取的schema经常性的变动,单一模型 艰难适应多变场景。具体可参见[1][2][3]。注: 记CCKS2022通用信息抽取比赛 基于 UniLM的生成式单模型在A榜6个数据集B榜10个数据集实现单模型 TOP8的效果。原创 2022-09-25 21:12:43 · 269 阅读 · 0 评论 -
复杂语境下的实体关系抽取
嘉宾:曾道建 湖南师范大学 助理教授整理:盛泳潘 重庆大学 助理研究员出品:DataFunTalk导读:实体关系抽取是知识图谱构建过程中的一个重要环节,同时也是信息抽取中的一个主要任务。近年来,该课题受到了学术界与工业界研究者们的广泛关注,其主要包含多个子任务,如关系分类、远程监督关系抽取等。今天的分享主要为实体关系联合抽取与文档级关系抽取,可将它们归结为复杂语境下的实体关系抽取。01实体关系抽取任务介绍一般情况下,我们将关系定义为两个或多个实体间的某种联系,而实体关系抽取旨在自动发现实体间存在的某种语义关原创 2022-09-22 16:00:24 · 495 阅读 · 0 评论