
NLP/文本匹配
数值最优化方法
u013250861
这个作者很懒,什么都没留下…
展开
-
NLP-文本蕴含(文本匹配):概述【单塔模型、双塔模型】
Learning to Rank: pointwise、pairwise、listwiseLTR(Learning to rank)是一种监督学习(SupervisedLearning)的排序方法,已经被广泛应用到推荐与搜索等领域。传统的排序方法通过构造相关度函数,按照相关度进行排序。然而,影响相关度的因素很多,比如tf,idf等。传统的排序方法,很难融合多种因数,比如向量空间模型以tf*idf作为权重构建相关度函数,就很难利用其他信息了,并且如果模型中参数比较多,也会使得调参非常困难,而且很可能会出现过原创 2022-02-27 23:54:59 · 2677 阅读 · 0 评论 -
NLP-文本匹配-2013:DSSM【首次提出将深度学习应用到文本匹配,每个文本对象均由5层的神经网络进行向量化表示,最后通过向量间的余弦值来衡量文本对象的相似度】【釆用词袋模型,丢失单词顺序关系】
深度语义结构模型(DSSM)首次提出了将深度学习应用到文本匹配方法中,该模型通过建模用户查询和文档的匹配度,同传统文本匹配模型相比获得了显著的提升。在深度语义结构模型中,每个文本对象均由5层的神经网络进行向量化表示,最后通过向量间的余弦值来衡量文本对象的相似度...原创 2021-09-06 00:11:39 · 222 阅读 · 0 评论 -
NLP-文本匹配-2016:MaLSTM(ManhaĴan LSTM,孪生神经网络模型)【语句相似度计算:用于文本对比,内容推荐,重复内容判断】【将原本的计算余弦相似度改为一个线性层来计算相似度】
MaLSTM模型(ManhaĴan LSTM,孪生神经网络)介绍模型的构建之前,我们先介绍下孪生神经网络(Siamese Network)和其名字的由来。Siamese和Chinese有点像。Siamese是古时候泰国的称呼,中文译作暹罗。Siamese在英语中是“孪生”、“连体”的意思。为什么孪生和泰国有关系呢?十九世纪泰国出生了一对连体婴儿,当时的医学技术无法使两人分离出来,于是两人顽强地生活了一生,1829年被英国商人发现,进入马戏团,在全世界各地表演,1839年他们访问美国北卡罗莱那州后来成原创 2021-10-22 21:28:46 · 2200 阅读 · 1 评论 -
NLP-文本匹配-2016:SiamseNet【Learning text similarity with siamese recurrent networks】
NLP-文本匹配-2016:SiamseNet【Learning text similarity with siamese recurrent networks】原创 2021-09-06 00:12:28 · 190 阅读 · 0 评论 -
NLP-文本匹配-2016:Compare-Aggregate【A Compare-Aggregate Model for Matching Text Sequences】
NLP-文本匹配-2016:Compare-Aggregate【A Compare-Aggregate Model for Matching Text Sequences】原创 2021-09-06 00:13:13 · 127 阅读 · 0 评论 -
NLP-文本匹配-2016:ESIM【Enhanced LSTM for Natural Language Inference】
NLP-文本匹配-2016:ESIM【Enhanced LSTM for Natural Language Inference】原创 2021-09-06 00:13:53 · 196 阅读 · 0 评论 -
NLP-文本匹配-2017:BiMPM【Bilateral Multi-Perspective Matching for Natural Language Sentences】
NLP-文本匹配-2016:BiMPM【Bilateral Multi-Perspective Matching for Natural Language Sentences】原创 2021-09-06 00:14:44 · 203 阅读 · 0 评论 -
NLP-文本匹配-2019:RE2【Simple and Effective Text Matching with Richer Alignment Features】
NLP-文本匹配-2017:RE2【Simple and Effective Text Matching with Richer Alignment Features】原创 2021-09-06 00:17:31 · 290 阅读 · 0 评论 -
NLP-文本匹配-2018:MGCN【Matching Article Pairs with Graphical Decomposition and Convolutions】
NLP-文本匹配-2018:MGCN【Matching Article Pairs with Graphical Decomposition and Convolutions】原创 2021-09-06 00:18:41 · 206 阅读 · 0 评论 -
NLP-文本匹配/语义相似度计算-2019:Poly-encoders【architectures and pre-training strategies for fast and accurate】
NLP-文本匹配-2019:Poly-encoders【Poly-encoders: Transformer Architectures and Pre-training Strategies fo】原创 2021-09-06 00:26:19 · 375 阅读 · 0 评论