
图算法
图算法
u013250861
这个作者很懒,什么都没留下…
展开
-
贝叶斯网络:故障诊断方法研究
贝叶斯网络(Bayesian Network, BN) 作为一种强有力的不确定性知识表达与推理模型, 受到了越来越多的重视。贝叶斯网络是一种基于网络结构的有向图解描述, 是人工智能、 概率理论、 图论、 决策理论相结合的产物。它用具有网络结构的有向图表达各个信息要素之间的关联关系及影响程度, 用节点变量表达各个信息要素, 用连接节点之间的有向边表达各个信息要素之间的关联关系, 用条件概率表表达各个信息要素之间的影响程度。参考资料:基于贝叶斯网络的故障诊断方法研究原创 2022-06-01 17:24:17 · 3197 阅读 · 0 评论 -
图算法:综述
pagerank算法(1.0.0)personalrank算法(1.0.0)k核算法(kcore)(1.0.0)k跳算法(k_hop)(1.0.0)最短路径(shortest_path)(2.1.5)全最短路(all_shortest_paths)(1.0.12)带一般过滤条件最短路径(filtered_shortest_path)(2.2.4)单源最短路(sssp)(1.0.0)点集最短路(shortest_path_of_vertex_sets)(2.1.5)关联路径(n_paths)原创 2022-05-28 20:07:31 · 497 阅读 · 0 评论 -
图算法(一):Pagerank算法(网页排名算法)【适用场景:网页排序、社交网络重点人物发掘等】【一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性】
一、概述PageRank算法又称网页排名算法,是一种由搜索引擎根据网页(节点)之间相互的超链接进行计算的技术,用来体现网页(节点)的相关性和重要性。如果一个网页被很多其他网页链接到,说明这个网页比较重要,也就是其PageRank值会相对较高。如果一个PageRank值很高的网页链接到其他网页,那么被链接到的网页的PageRank值会相应地提高。适用场景:PageRank算法适用于网页排序、社交网络重点人物发掘等场景。在实际应用中许多数据都以图(graph)的形式存在,比如,互联网、社交网络都可原创 2022-05-28 19:39:18 · 2745 阅读 · 0 评论 -
图算法(二):PersonalRank算法【适用场景:商品推荐、好友推荐和网页推荐等】【继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性】
PersonalRank算法又称Personalized PageRank算法。该算法继承了经典PageRank算法的思想,利用图链接结构来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以基于source节点个性化地计算网络节点的相关性和重要性。PersonalRank值越高,source节点的相关性/重要性越高。适用场景:Per原创 2022-05-28 20:10:17 · 1546 阅读 · 0 评论 -
图算法(三):K核算法(KCore)【计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力】
一、概述k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。适用场景:k核算法(k-core)适用于社区发现、金融风控等场景。k-Core算法是一种用来在图中找出符合指定核心度的紧密关联的子图结构,在k-Core的结果子图中,每个顶点至少具有k的度数,且所有顶点都至少与该子图中的 k 个其他节点相连。k-Core通常用来对一个图进行子图划分,通过去除不重要的顶点,将符合逾期的子图暴露出来进行进一步分析。k-原创 2022-05-28 20:14:51 · 5054 阅读 · 0 评论 -
图算法(四):K跳算法(k-hop)【适用场景:用于关系发现、影响力预测、好友推荐等场景】【从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”】
一、概述k跳算法(k-hop)从起点出发,通过宽度优先搜索(BFS),找出k层与之关联的所有节点。找到的子图称为起点的“ego-net”。k跳算法会返回ego-net中节点的个数。适用场景:k跳算法(k-hop)适用于关系发现、影响力预测、好友推荐等场景。二、三、参考资料:k跳算法(k-hop)...原创 2022-05-28 20:20:46 · 1779 阅读 · 0 评论 -
图算法(十一):点的介性中心度(Betweenness Centrality)
如果要衡量一个用户在关注网络中的“重要程度”,我们可以利用这几种指标:该用户的粉丝数,即 入度(In-degree);该用户的 PageRank值;该用户的 HITS值 【维基百科 、百度百科】以上3中指标在网络分析中也可被归为同一类指标:点的中心度(Centrality)。但我们发现,其实三种指标所表达的“重要”,其含义是不完全一样的,同一个网络,同一个节点,可能不同的中心度排名会有不小的差距。据Li Yang等人的论文总结了四种衡量网络中一个节点的重要程度的方法:Degree Cen原创 2022-05-28 19:59:08 · 1004 阅读 · 0 评论 -
图算法(五):最短路径算法(Shortest Path)【适用场景:用于路径设计、网络规划等场景】【用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。】
一、概述最短路径算法(Shortest Path)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的最短路径。适用场景::最短路径算法(Shortest Path)适用于路径设计、网络规划等场景。二、三、参考资料:最短路径算法(Shortest Path)...原创 2022-05-29 10:10:31 · 1073 阅读 · 0 评论 -
图算法(六):全最短路算法(All Shortest Paths)【适用场景:用于路径设计、网络规划等场景】【用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径】
一、概述全最短路径算法(All Shortest Paths)用以解决图论研究中的一个经典算法问题,旨在寻找图中两节点之间的所有最短路径。适用场景:全最短路径算法(All Shortest Paths)适用于路径设计、网络规划等场景。二、三、参考资料:...原创 2022-05-29 10:12:45 · 471 阅读 · 0 评论 -
图算法(七):带一般过滤条件最短路径(Filtered Shortest Path)【适用场景:用于路径设计、网络规划等,通过对点边条件的过滤,控制最短路径的生成】【寻找两点间满足过滤条件的最短路径】
一、概述带一般过滤条件最短路径算法(Filtered Shortest Path)寻找两点间满足过滤条件的最短路径,如有多条,返回任意一条最短路径。适用场景:带一般过滤条件的最短路径算法(Filtered Shortest Path)适用于路径设计、网络规划等场景,通过对点边条件的过滤,控制最短路径的生成。二、三、参考资料:带一般过滤条件最短路径(Filtered Shortest Path)...原创 2022-05-29 10:15:41 · 154 阅读 · 0 评论 -
图算法(八):单源最短路算法(SSSP)【适用场景:用于网络路由、路径设计等场景】【给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度】
一、概述单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。适用场景:单源最短路算法(SSSP)适用于网络路由、路径设计等场景。二、三、参考资料:单源最短路算法(SSSP)...原创 2022-05-29 10:18:14 · 1252 阅读 · 0 评论 -
图算法(九):点集最短路(Shortest Path of Vertex Sets)【适用场景:用于互联网社交、金融风控、路网交通、物流配送等场景下区块之间关系分析】【用于发现两个点集之间的最短路径】
一、概述点集最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的最短路径。适用场景:点集最短路算法(Shortest Path of Vertex Sets)适用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系分析。二、三、参考资料:点集最短路(Shortest Path of Vertex Sets)...原创 2022-05-29 10:20:41 · 195 阅读 · 0 评论 -
图算法(十):关联路径算法(n-Paths)【适用场景:用于关系分析、路径设计、网络规划等场景】【用于寻找图中两节点之间在层关系内的n条路径】
一、概述关联路径算法(n-Paths)用于寻找图中两节点之间在层关系内的n条路径。适用场景:关联路径算法(n-Paths)适用于关系分析、路径设计、网络规划等场景。二、三、参考资料:关联路径算法(n-Paths)...原创 2022-05-29 10:22:43 · 621 阅读 · 0 评论 -
图算法(十一):紧密中心度算法(Closeness Centrality)【适用场景:社交网络中关键节点发掘】【计算一个节点到所有其他可达节点的最短距离的倒数再累积归一化】【值越大,节点越靠近图中心】
一、概述紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。紧密中心度可以用来衡量信息从该节点传输到其他节点的时间长短。节点的“Closeness Centrality”越大,其在所在图中的位置越靠近中心。适用场景:紧密中心度算法(Closeness Centrality)适用于社交网络中关键节点发掘等场景。二、三、参考资料:...原创 2022-05-29 10:30:54 · 1703 阅读 · 0 评论 -
图算法(十二):标签传播算法(Label Propagation)【适用场景:用于资讯传播、广告推荐、社区发现等场景】【一种基于图的半监督学习方法】【用已标记节点的标签信息去预测未标记节点的标签信息】
一、概述标签传播算法(Label Propagation)是一种基于图的半监督学习方法,其基本思路是用已标记节点的标签信息去预测未标记节点的标签信息。利用样本间的关系建图,节点包括已标注和未标注数据,其边表示两个节点的相似度,节点的标签按相似度传递给其他节点。标签数据就像是一个源头,可以对无标签数据进行标注,节点的相似度越大,标签越容易传播。适用场景:标签传播算法(Label Propagation)适用于资讯传播、广告推荐、社区发现等场景。二、三、参考资料:标签传播算法(Label Pr原创 2022-05-29 10:35:56 · 1098 阅读 · 0 评论 -
图算法(十四):关联预测算法(Link Prediction)【适用场景:用于社交网上的好友推荐、关系预测等】【给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测他们之间的紧密关系】
一、概述关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测他们之间的紧密关系。适用场景:关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。二、三、参考资料:...原创 2022-05-29 10:45:51 · 1037 阅读 · 0 评论 -
图算法(十三):Louvain算法【适用场景:用于社团发掘、层次化聚类等场景】【基于模块度的社区发现算法,其优化目标是最大化整个社区网络的模块度】
一、概述Louvain算法是基于模块度的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标是最大化整个社区网络的模块度。适用场景:Louvain算法适用于社团发掘、层次化聚类等场景。二、三、参考资料:Louvain算法...原创 2022-05-29 10:43:21 · 1839 阅读 · 0 评论 -
图算法(十五):Node2vec算法【适用场景:用于节点功能相似性比较、节点结构相似性比较、社团聚类等场景】【调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征】
一、概述Node2vec算法通过调用word2vec算法,把网络中的节点映射到欧式空间,用向量表示节点的特征。Node2vec算法通过回退参数 P 和前进参数 Q 来生成从每个节点出发的随机步,带有BFS和DFS的混合,回退概率正比于1/P,前进概率正比于1/Q。每个节点出发生成多个随机步,反映出网络的结构信息。适用场景:Node2vec算法适用于节点功能相似性比较、节点结构相似性比较、社团聚类等场景。二、三、参考资料:Node2vec算法...原创 2022-05-29 10:48:04 · 750 阅读 · 0 评论 -
图算法(十六):实时推荐算法(Real-time Recommendation)【适用场景:适用于电商、社交等多领域的推荐场景】【基于随机游走的实时推荐算法】【推荐与输入节点相近度高、关系近的节点】
一、概述实时推荐算法(Real-time Recommendation)是一种基于随机游走模型的实时推荐算法,能够推荐与输入节点相近程度高、关系或喜好相近的节点。适用场景:实时推荐算法(Real-time Recommendation)可以基于历史购买和浏览数据进行相近商品推荐,也可以为用户进行相近喜好的潜在好友推荐。适用于电商、社交等多领域的推荐场景。二、三、参考资料:实时推荐算法(Real-time Recommendation)...原创 2022-05-29 10:52:06 · 569 阅读 · 0 评论 -
图算法(十七):共同邻居算法(Common Neighbors)【适用场景:用于电商、社交等多领域的推荐场景】【得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友,来推测两个节点之间的关系】
一、概述共同邻居算法(Common Neighbors)是一种常用的基本图分析算法,可以得到两个节点所共有的邻居节点,直观地发现社交场合中的共同好友、以及在消费领域共同感兴趣的商品,进一步推测两个节点之间的潜在关系和相近程度。适用场景:共同邻居算法(Common Neighbors)适用于电商、社交等多领域的推荐场景。二、三、参考资料:...原创 2022-05-29 11:13:46 · 1593 阅读 · 0 评论 -
图算法(十八):联通分量算法(Connected Component)【联通分量代表图中的一个子图,当中所有节点都相互连接】【考虑路径方向的为强联通分量、不考虑路径方向的为弱联通分量】
一、概述联通分量代表图中的一个子图,当中所有节点都相互连接。考虑路径方向的为强联通分量(strongly connected component);不考虑路径方向的为弱联通分量(weakly connected component);联通分量算法(Connected Component)计算得到的是弱联通分量。适用场景:二、三、参考资料:联通分量算法(Connected Component)...原创 2022-05-29 11:25:04 · 771 阅读 · 0 评论 -
图算法(十九):度数关联度算法(Degree Correlation)【适用场景:用于衡量图的结构特性场景】【计算所有边上起点和终点度数之间的Pearson关联系数,来表示图中高度数节点之间是否相连】
一、概述度数关联度算法(Degree Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。适用场景:度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。二、三、参考资料:度数关联度算法(Degree Correlation)...原创 2022-05-29 11:27:55 · 947 阅读 · 0 评论 -
图算法(二十):三角计数算法(Triangle Count)【适用场景:用于衡量图的结构特性场景】【统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密】
一、概述三角计数算法(Triangle Count)统计图中三角形个数。三角形越多,代表图中节点关联程度越高,组织关系越严密。适用场景:三角计数算法(Triangle Count)适用于衡量图的结构特性场景。二、三、参考资料:三角计数算法(Triangle Count)...原创 2022-05-29 11:29:57 · 1941 阅读 · 0 评论 -
图算法(二十一):聚类系数算法(Cluster Coefficient)【适用场景:用于衡量图的结构特性场景】【聚类系数表示一个图中节点聚集程度的系数】【用于计算图中节点的聚集程度】
一、概述聚类系数表示一个图中节点聚集程度的系数。在现实的网络中,尤其是在特定的网络中,由于相对高密度连接点的关系,节点总是趋向于建立一组严密的组织关系。聚类系数算法(Cluster Coefficient)用于计算图中节点的聚集程度。适用场景:聚类系数算法(Cluster Coefficient)适用于衡量图的结构特性场景。二、三、参考资料:聚类系数算法(Cluster Coefficient)...原创 2022-05-29 11:35:58 · 1795 阅读 · 0 评论 -
图算法(二十二):点集共同邻居(Common Neighbors of Vertex Sets)【适用场景:用于进行关系发掘、产品/好友推荐等图分析技术】【得到两个点集合所共有的邻居】
一、概述点集共同邻居(Common Neighbors of Vertex Sets)可以得到两个点集合(群体集合)所共有的邻居(即两个群体临域的交集),直观的发现与两个群体共同联系的对象,如发现社交场合中的共同好友、消费领域共同感兴趣的商品、社区群体共同接触过的人,进一步推测两点集合之间的潜在关系和联系程度。适用场景:点集共同邻居算法适用于进行关系发掘、产品/好友推荐等图分析技术。二、三、参考资料:...原创 2022-05-29 11:42:12 · 612 阅读 · 0 评论 -
图算法(二十三):点集全最短路(All Shortest Paths of Vertex Sets)【适用场景:互联网社交、金融风控等场景下的区块之间关系的分析】【用于发现两个点集之间的所有最短路径】
一、概述点集全最短路算法(Shortest Path of Vertex Sets)用于发现两个点集之间的所有最短路径。适用场景:点集最短路算法可应用于互联网社交、金融风控、路网交通、物流配送等场景下的区块之间关系的分析。二、三、参考资料:...原创 2022-05-29 11:45:01 · 272 阅读 · 0 评论 -
图算法(二十四):带一般过滤条件环路检测(filtered circle detection)【适用场景:用于金融风控中循环转账检测、反洗钱,网络路由中异常链接检测】【寻找图中所有满足过滤条件的环路】
一、概述带一般过滤条件环路检测(filtered circle detection)目的是寻找图中所有满足过滤条件的环路。适用场景:带一般过滤条件的环路检测(filtered circle detection)算法适用于金融风控中循环转账检测、反洗钱,网络路由中异常链接检测,企业担保圈贷款风险识别等场景。二、三、参考资料:带一般过滤条件环路检测(filtered circle detection)...原创 2022-05-29 11:46:39 · 334 阅读 · 0 评论 -
图算法(二十五):子图匹配(Subgraph Matching)【基本的图查询操作,意在发掘图重要的子结构】【适用场景:社交网络分析、群体发现、异常检测】【在一个给定的大图里找到与给定小图同构的子图】
一、概述子图匹配(subgraph matching)算法的目的是在一个给定的大图里面找到与一个给定小图同构的子图,这是一种基本的图查询操作,意在发掘图重要的子结构。适用场景:子图匹配(subgraph matching)算法适用于社交网络分析、生物信息学、交通运输、群体发现、异常检测等领域。二、三、参考资料:子图匹配(Subgraph Matching)...原创 2022-05-28 19:33:05 · 5222 阅读 · 0 评论 -
图算法(二十六):带过滤全对最短路径(Filtered All Pairs Shortest Paths)【适用场景:用于关系挖掘、路径规划、网络规划等】【寻找图中任意两点之间满足条件的最短路径】
一、概述带过滤全对最短路径(Filtered All Pairs Shortest Paths)是寻找图中任意两点之间满足条件的最短路径。当前,考虑到实际应用场景,此算法需要用户指定起点集(sources)和终点集(targets),本算法将返回起点集合到终点集合之间满足条件的两两全最短路径。适用场景:带过滤全对最短路径(Filtered All Pairs Shortest Paths)适用于关系挖掘、路径规划、网络规划等场景。二、三、参考资料:带过滤全对最短路径(Filtered Al原创 2022-05-30 10:15:02 · 221 阅读 · 0 评论 -
图算法(二十七):带过滤全最短路径(Filtered All Shortest Paths)【在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径】
一、概述带过滤全最短路径(Filtered All Shortest Paths)是在最短路径算法(Shortest Path)基础上支持条件过滤,寻找图中两节点之间满足条件的全最短路径。适用场景:适用于关系挖掘、路径规划、网络规划等场景。二、三、参考资料:带过滤全最短路径(Filtered All Shortest Paths)...原创 2022-05-30 10:15:22 · 140 阅读 · 0 评论 -
图算法(二十八):TopicRank算法【适用场景:用于政务12345热线投诉话题排序】【多维度话题排序算法】
一、概述TopicRank算法12345热线多维度话题排序算法之一。适用场景:适用于政务12345热线投诉话题排序。二、三、参考资料:TopicRank算法原创 2022-05-30 10:15:45 · 299 阅读 · 0 评论 -
图算法(二十九):带过滤的n_paths算法【给定起始点source、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径】
一、概述带过滤的n_paths算法是给定起始点source、目的点target、跳数k、路径数n、过滤条件filters,找出source和target间不多于n条的k跳无环路径。适用场景:任意网络。二、三、参考资料:带过滤的n_paths算法(2.2.22)...原创 2022-05-30 10:16:02 · 167 阅读 · 0 评论