
RS/特征工程
RS/特征工程
u013250861
这个作者很懒,什么都没留下…
展开
-
推荐系统:Embedding方法在推荐系统中的应用
本章会从嵌入方法简介、嵌入方法应用于推荐系统的一般思路、几种用于推荐系统的嵌入方法的算法原理介绍、嵌入方法在推荐系统中的应用案例介绍、利用嵌入方法解决冷启动等 5 部分来讲解嵌入方法。作者在《矩阵分解推荐算法》中提到,矩阵分解算法是一类嵌入方法,通过将用户行为矩阵分解为用户特征矩阵和标的物特征矩阵的乘积,最终将用户和标的物嵌入到低维向量空间中,通过用户特征向量和标的物特征向量的内积来计算用户对标的物的偏好得分。原创 2023-03-06 00:05:28 · 488 阅读 · 0 评论 -
推荐系统:数据与特征工程
推荐系统通过推荐算法来为用户生成个性化推荐结果,而推荐算法依赖数据输入来构建算法模型。本章我们来讲解推荐系统所依赖的数据,怎么处理这些数据,让数据转换成推荐算法可以直接使用的形式。具体来说,我们会从推荐算法建模的一般流程、推荐系统依赖的数据源介绍、数据处理与特征工程简介、常用推荐算法之数据与特征工程、推荐系统数据与特征工程未来趋势等 5 个部分来介绍相关知识点,期望本章的讲解能够让读者更加深入地理解推荐系统依赖的数据源的特点、数据预处理方法以及基于这些数据之上的特征工程方法与技巧。原创 2023-03-06 00:05:38 · 1649 阅读 · 0 评论 -
推荐系统:Embedding 技术实践总结
对于 CNN 结构来说,不同层级的神经元学习到了不同类型的图像特征,由底向上特征形成层级结构,对人脸识别任务,训练好网络后,把每层神经元学习到的特征可视化,肉眼看一看每层学到了啥特征,你会看到最底层的神经元学到的是线段等特征,图示的第二个隐层学到的是人脸五官的轮廓,第三层学到的是人脸的轮廓,通过三步形成了特征的层级结构,越是底层的特征越是所有不论什么领域的图像都会具备的比如边角线弧线等底层基础特征,越往上抽取出的特征越与手头任务相关。预先训练的 embedding 特征向量,训练样本大,参数学习更充分。原创 2023-01-16 23:31:16 · 357 阅读 · 0 评论 -
推荐系统-特征工程:常用特征【用户特征:自然属性、画像特征、关系特征】【物品特征:静态特征、动态特征、相关性特征、上下文特征】
画像特征(一般是根据用户的历史行为推断或计算出来的):兴趣、行为;关系特征:人群属性、关注关系、亲密度;动态特征:热度、分类热度、标签热度;相关性特征:主题相似度、分类匹配度;自然属性:姓名、性别、年龄、地域;静态特征:分类、标签、主题、价格;上下文特征:最近N条浏览记录;原创 2022-12-17 17:10:06 · 1067 阅读 · 0 评论 -
推荐系统:用户“行为数据”的采集【使用Kafaka、Cassandra处理数据】【如果与业务数据重合,也需要独自采集】
推荐系统:用户“行为数据”的采集【使用Kafaka、Cassandra处理数据】【如果与业务数据重合,也需要独自采集】原创 2022-07-29 22:30:28 · 360 阅读 · 0 评论 -
推荐系统-特征工程:概述
特征工程的定义,借用维基百科上的说法:笔者的理解:特征工程就是使用领域知识对原始数据进行处理,将其加工成特征,使得机器学习的结果得到质量上的提升。特征工程是技术中的艺术,如果把机器学习比作做饭,原始数据就好像原始食材,没法直接放锅里去煮,特征工程就是备菜的过程。清洗、加工、切菜、腌制等操作决定了做出的菜是否美味。而这个加工的过程,是切段还是切丝,是盐卤还是酱腌,就看厨师心中之丘壑了。原创 2022-12-01 12:09:41 · 556 阅读 · 0 评论