
泛函分析基础
文章平均质量分 75
主要讲线性泛函,是高等代数的推广
u013250861
这个作者很懒,什么都没留下…
展开
-
泛函分析基础9-3-希尔伯特空间1-3:定义2【n项部分和】
仿照欧氏空间中正交坐标系的概念,我们在内积空间中引入正交系的概念.我们在内积空间中引入规范正交系的目的是要把空间中的向量关于规范正交系展开成级数,为此,首先介绍一般赋范线性空间中级数收敛的概念.设 XXX 是赋范线性空间, xi,i=1,2,⋯x _ { i } , i = 1 , 2 , \cdotsxi,i=1,2,⋯ 是 XXX中一列向量, α1,α2,⋯\alpha _ { 1 } , \alpha _ { 2 } , \cdotsα1,α2,⋯ 是一列数,作形式级数∑i=1∞αixi,(3)原创 2024-08-02 23:34:18 · 630 阅读 · 0 评论 -
泛函分析基础9-3-希尔伯特空间1-2:正交系基本性质【①正交系M中任意有限个向量x₁,…xₙ,有∥x₁+…+xₙ∥²=∥x₁∥²+…+∥xₙ∥²;②正交系M是内积空间X中线性无关子集】
设MMM是 内积空间XXX的 一个不含零的子集,若MMM中向量两两正交,则称MMM为XXX中 的正交系,又若MMM中 向量的范数都为1,则称MMM为XXX中规范正交系。正交系有以下基本性质.1∘1∘对正交系MMM中任意有限个向量x1x2⋯xnx1x2⋯xn有∥x1x2⋯xn∥2∥x1∥2∥x2∥2⋯∥xn∥21∥x1x2⋯xn∥2∥x1。原创 2024-08-02 22:48:48 · 653 阅读 · 0 评论 -
泛函分析基础7-概述:泛函分析研究对象【无限维空间上的线性算子/泛函】【前置课程(有限维线性空间上的映射/函数):①数学分析;②高等代数】【在数学分析、高等代数的基础上进行:维度的推广、函数的一般化】
在数学分析、高等代数的基础上进行推广。原创 2024-07-26 22:36:03 · 504 阅读 · 0 评论 -
泛函分析基础7-1-度量空间1:度量空间的进一步例子【欧式空间➠离散的度量空间、序列空间S、有界函数空间B(A)、可测函数空间M(X)、C[a,b]空间、l²】
但我们曾指出,这些概念可以一字不改地移到一般度量空间中去,在这一章里,我们将沿用这些概念而不再重新定义,并且运用这些概念讨论度量空间的进一步性质.不过,希尔伯特创立的一种空间(希尔伯特空间)可以看作是可数维的欧氏空间,与欧氏空间很相像,甚至还满足无限维的"勾股定理",十分巧妙.等等.我们将在更广泛的赋范线性空间和希尔伯特空间中研究"极限"“收敛”"发散"之类的概念,从而探讨各种泛函和算子的连续性问题.维度量空间的例子,现在我们继续引人其他的度量空间.首先,我们注意到,这样的函数空间是无限维的,比。原创 2024-05-23 00:13:06 · 657 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-1:度量空间中的ε-邻 域、内点、外点、边界点、聚点、导集、闭包、开集
(依坐标收敛、一致收敛、依测度收敛等),但当我们引入适当的距离以后,都可以统一。由上面一系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致。2,可以定义距离空间中一个点集的内点,外点,边界点及聚点,在度量空间的极限概念之中,这就为统一处理提供了方便.下面我们引入度量空间中稠密子集和可分度量空间的概念,是一族两两不相交的球,总数有不可数个.但由于。可分空间.事实上,坐标为有理数的点的全体是。2度量空间中的极限,稠密集,可分空间。下面举一个不可分度量空间的例子.令。空间中收敛点列的极限是唯一的.原创 2024-05-23 00:15:43 · 699 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-3-1:度量空间中点列收敛(依度量收敛)的具体意义【欧氏空间】
下面讨论某些具体空间中点列收敛的具体意义。原创 2024-07-27 00:04:02 · 299 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-2:度量空间中的收敛点列、点列的极限(极限是唯一的)、点集的直径δ、有界集(δ<∞)、收敛点列一定是有界的、度量空间中闭集
设 (X,d)( X , d )(X,d) 为 度量空间, ddd 是距离,定义U(x0,ε)={x∈X:d(x,x0)原创 2024-07-26 23:44:57 · 522 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-3-2:度量空间中点列收敛(依度量收敛)的具体意义【C[a,b]空间】
下面讨论某些具体空间中点列收敛的具体意义。原创 2024-07-27 00:05:06 · 398 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-3-3:度量空间中点列收敛(依度量收敛)的具体意义【序列空间】
下面讨论某些具体空间中点列收敛的具体意义。时收敛于0.因此,对任何给定的正数。中点列及点,下面证明点列。收敛,所以存在正整数。成立,对任何给定正数。原创 2024-07-27 00:06:05 · 333 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-3-4:度量空间中点列收敛(依度量收敛)的具体意义【可测函数空间】
由上面一系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致(依坐标收敛、一致收敛、依测度收敛等),但当我们引入适当的距离以后,都可以统一在度量空间的极限概念之中,这就为统一处理提供了方便.下面讨论某些具体空间中点列收敛的具体意义。中 的点列及点,则点列。原创 2024-07-27 00:07:55 · 378 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-4-1:稠密集【设E和M是度量空间X两子集,M⁻表M闭包,若E⊂Mˉ,则称M在E中稠密(E中的每个点周围都充满M中的点,且可用M中的点来逼近)】、稠密子集
设XXX是 度量空间,EEE和MMM是XXX中 两个子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果E⊂E \subsetE⊂MˉMˉ那 么称集MMM在 集EEE中 稠密,当EXE = XEX时称MMM为XXX的 一个稠密子集.如果XXX有 一个可数的稠密子集,则称XXX是可分空间例1nnn维欧氏空间RnRn是可分空间.事实上,坐标为有理数的点的全体是RnRn的 可数稠密子集.例2离散度量空间XX。原创 2024-07-26 23:45:47 · 864 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-4-2-1:“可分空间”定义【若X有一个可数的稠密子集,则称X是可分度量空间】
设XXX是 度量空间,EEE和MMM是XXX中 两个子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果E⊂E \subsetE⊂MˉMˉ那 么称集MMM在 集EEE中稠密当EXE = XEX时称MMM为XXX的 一个稠密子集.【表述为:设XXX是 度量空间,MMM是XXX中的子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果X⊂X \subsetX⊂MˉMˉ那 么称MMM为XX。原创 2024-07-27 16:25:09 · 700 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-4-2-2:“可分空间”-例01【n 维欧氏空间ℝⁿ是可分度量空间】
设XXX是 度量空间,EEE和MMM是XXX中 两个子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果E⊂E \subsetE⊂MˉMˉ那 么称集MMM在 集EEE中稠密当EXE = XEX时称MMM为XXX的 一个稠密子集.【表述为:设XXX是 度量空间,MMM是XXX中的子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果X⊂X \subsetX⊂MˉMˉ那 么称MMM为XX。原创 2024-07-27 16:55:21 · 522 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-4-2-3:“可分空间”-例02【离散度量空间X可分的充要条件为:X是可数集】
设XXX是 度量空间,EEE和MMM是XXX中 两个子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果E⊂E \subsetE⊂MˉMˉ那 么称集MMM在 集EEE中稠密当EXE = XEX时称MMM为XXX的 一个稠密子集.【表述为:设XXX是 度量空间,MMM是XXX中的子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果X⊂X \subsetX⊂MˉMˉ那 么称MMM为XX。原创 2024-07-27 16:56:32 · 578 阅读 · 0 评论 -
泛函分析基础7-1-度量空间2-4-2-4:l∞是“不可分空间”【令l∞为有界实/复数列全体,对其中任意两点x=(x₁…),y=(y₁…),定义d(x,y)=sup∣xᵢ-yᵢ|】
设XXX是 度量空间,EEE和MMM是XXX中 两个子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果E⊂E \subsetE⊂MˉMˉ那 么称集MMM在 集EEE中稠密当EXE = XEX时称MMM为XXX的 一个稠密子集.【表述为:设XXX是 度量空间,MMM是XXX中的子集,令Mˉ\bar { M }Mˉ表 示MMM的闭包,如果X⊂X \subsetX⊂MˉMˉ那 么称MMM为XX。原创 2024-07-27 16:59:24 · 1292 阅读 · 0 评论 -
泛函分析基础7-1-度量空间3-连续映射1:在点x₀连续(ε-δ方式定义)【T是X到Y映射,x₀∈X,若∀正ε,∃正数δ,使对X中满足d(x,x₀)<δ的x,有d(Tx,Tx₀)<ε➠T在x₀连续】
设XXdYYdˉXXdYYdˉ是 两个度量空间,TTT是XXX到YYY中 映射,x0∈Xx0∈X如果对于任意给定的正数εε存在正数δ0δ0使对XXX中一切满足dxx0δdxx0δ的xx ,x有dTxTx0εdTxTx0ε则称TTT在x0x _ { 0 }x0连续。如果用邻域来描述,那么TTT在x0x _ { 0 }x0。原创 2024-05-23 00:16:44 · 427 阅读 · 0 评论 -
泛函分析基础7-1-度量空间3-连续映射2:在点x₀的连续性(极限方式定义)【设T是度量空间X到Y的映射,那么T在x₀∈X连续的充要条件为:当xₙ➝x₀(n➝∞)时,必有Txₙ➝Tx₀(n➝∞)】
函数fff在某Ux0Ux0上有定义. 若limx→x0fxfx01x→x0limfxfx01则称fff在点x0x_{0}x0连续.《数学分析》我们也可以用极限来定义映射的连续性。原创 2024-07-27 12:22:08 · 828 阅读 · 0 评论 -
泛函分析基础7-1-度量空间3-连续映射3:度量空间X到Y中的映射T是X上连续映射的充要条件为:Y中任意开集M的原像T⁻¹M是X中的开集【连续映射⇔任意开集的原像是开集】
关于连续映射有下面的定理。原创 2024-07-27 13:03:25 · 678 阅读 · 0 评论 -
泛函分析基础7-1-度量空间4-1:柯西点列【设{xₙ}是度量空间X中点列,如果∀ε>0,∃正整数N=N(ε),使当n,m>N时,必有d(xₙ,xₘ)<ε,则称{xₙ}是X中的柯西点列/基本点列】
4柯西点列和完备度量空间首先回忆一下 R\mathbf { R }R 中柯西点列的定义.设{xn}\left\{ x _ { n } \right\}{xn} 是 R\mathbf { R }R中的点列,如果对任意给定的正数 ε>0,\varepsilon > 0 ,ε>0, 存在正整数 N=N(ε),N = N ( \varepsilon ) ,N=N(ε), 当n,m>Nn , m > Nn,m>N 时有d(xn,xm)=∣xn−xm∣原创 2024-05-23 00:17:39 · 1204 阅读 · 0 评论 -
泛函分析基础7-1-度量空间4-2-1:完备的度量空间【若度量空间X中每个柯西点列都在X中收敛,那么称X是“完备的度量空间”】【在一般度量空间中,收敛点列⊂柯西点列⊂有界点列】
如果度量空间Xd中每个柯西点列都在Xd中收敛,那么称Xd是。注意:这里要求在X中存在一点,使该柯西点列收敛到这一点。由完备度量空间的定义,立即可知有理数全体按绝对值距离构成的空间不完备,但n维欧氏空间Rn则是完备的度量空间在一般度量空间中,柯西点列不一定收斂,但是度量空间中的每一个收敛点列都是柯西点列.实际上,如果xn→xn→∞那么对任意正数ε0存在NNε使当nN时,有dxnx2ε因此,当nmN时,由三点不等式,得到dx。原创 2024-07-27 14:32:42 · 561 阅读 · 0 评论 -
泛函分析基础7-1-度量空间4-2-2:子空间的完备性【完备度量空间X的子空间M是完备空间的充要条件为M是X中的闭子空间】
中存在一点,使该柯西点列收敛到这一点。中点列,如果对任意给定的正数。中收敛,由极限的唯一性可知。是完备空间的充要条件为。是完备度量空间,所以存在。是完备子空间,对每个。中 收敛.这就证明了。原创 2024-07-27 16:33:27 · 683 阅读 · 0 评论 -
泛函分析基础7-1-度量空间4-2-3:完备度量空间-例01【令l∞为有界实/复数列全体,对其中任意两点x=(x₁…),y=(x₁…),定义d(x,y)=sup∣xᵢ-yᵢ|,l∞是完备度量空间】
中存在一点,使该柯西点列收敛到这一点。中点列,如果对任意给定的正数。是柯西数列,因此,存在数。中 的柯西点列,其中。由(3)式,可知对一切。因此,对每一个固定的。原创 2024-07-27 16:36:33 · 916 阅读 · 0 评论 -
泛函分析基础7-1-度量空间4-2-4:完备度量空间-例02【令C为收敛实/复数列全体,对其中任意两点x=(x₁…),y=(x₁…),定义d(x,y)=sup∣xᵢ-yᵢ|,C是完备度量空间】
为此我们首先证明关于子空间完备性的一个定理(如上)中存在一点,使该柯西点列收敛到这一点。表示所有收敛的实(或复)数列全体,对。中点列,如果对任意给定的正数。是 一度量空间,实际上它是。中收敛,由极限的唯一性可知。是完备空间的充要条件为。是完备度量空间,所以存在。中的闭子空间即可.对任何。是柯西数列,因而收敛,即。是完备子空间,对每个。中 收敛.这就证明了。原创 2024-07-27 16:39:39 · 1213 阅读 · 0 评论 -
泛函分析基础7-1-度量空间4-2-5:完备度量空间-例03【C[a,b] 是完备的度量空间】
中存在一点,使该柯西点列收敛到这一点。中的柯西点列.于是对任何正数。中点列,如果对任意给定的正数。下面举几个不完备空间的例子.事实上,在(4)式中令。且 由(5)式知,当。是柯西数列,所以存在。原创 2024-07-27 16:40:36 · 548 阅读 · 0 评论 -
泛函分析基础7-1-度量空间4-2-6:完备度量空间-例04【令P[a,b]表示闭区间[a,b]上实系数多项式全体,则P[a,b]作为C[a,b]的子空间是不完备的度量空间】
设 X=(X,d)X = ( X , d )X=(X,d) 是度量空间, {xn}\left\{ x _ { n } \right\}{xn} 是 XXX中点列,如果对任意给定的正数 ε>0,\varepsilon > 0 ,ε>0,存在正整数 N=N(ε),N = N ( \varepsilon ) ,N=N(ε), 使当 n,m>Nn , m > Nn,m>N 时,必有d(xn,xm)原创 2024-07-27 16:42:35 · 556 阅读 · 0 评论 -
泛函分析基础7-度量空间和赋范线性空间5:度量空间的完备化
如果我们把两个等距同构的度量空间不加以区别,视为同一,那么定理1可以改。大",即成为某个完备度量空间的稠密子空间,为此,首先介绍几个概念。在泛函分析中往往把两个等距同构的度量空间不加区别而视为同一的。稠密.下面我们要说明每一个不完备的度量空间都可以加以"扩。中 加入"无理数",使之成为新的度量。是度量空间,那么存在唯一的完备度量空间。子空间不是完备的度量空间,但是我。是 另一个完备度量空间,而且。中的柯西点列,所以对任何正数。是度量空间,那么一定存在一完。扩大"成完备的度量空间。两个度量空间,如果存在。原创 2024-05-23 00:18:36 · 523 阅读 · 0 评论 -
泛函分析基础7-1-度量空间6-压缩映射原理1:压缩映射【设X是度量空间,T是X到X中的映射,如果存在一个数α,0<α<1,使得对所有x,y∈X,有d(Tx,Ty)⩽αd(x,y),则称T是压缩映射】
6压缩映射原理及其应用作为完备度量空间概念的应用,我们介绍巴拿赫( Banach)的压缩映射原理,它在许多关于存在唯一性的定理(例如微分方程、代数方程、积分方程等)的证明中是一个有力的工具定义设 XXX 是度量空间, TTT 是 XXX 到 XXX 中 的映射,如果存在一个数α,0原创 2024-05-23 00:19:29 · 698 阅读 · 0 评论 -
泛函分析基础7-1-度量空间6-压缩映射原理2:压缩映射原理【设X是完备的度量空间,T是X上的压缩映射,那么T有且只有一个不动点(就是说,方程Tx =x有且只有一个解)】
设XXX是度量空间,TTT是XXX到XXX中 的映射,如果存在一个数α0α1α0α1使得对所有的xy∈Xxy∈XdTxTy⩽αdxy1dTxTy⩽αdxy1则称TTT是压缩映射。压缩映射在几何上的意思是说点xxx和yyy经TTT映射后,它们像的距离缩短了,不超过dxydxy的α\alphaα倍α1α1。原创 2024-07-27 17:24:29 · 1514 阅读 · 0 评论 -
泛函分析基础7-1-度量空间6-压缩映射原理3:隐函数存在定理【设f(x,y)处处连续且处处有y的偏导f‘,若还存在常数m和M满足0<m⩽f‘⩽M,则方程f=0必有唯一的连续函数y=φ(x)作为解】
设XXX是度量空间,TTT是XXX到XXX中 的映射,如果存在一个数α0α1α0α1使得对所有的xy∈Xxy∈XdTxTy⩽αdxy1dTxTy⩽αdxy1则称TTT是压缩映射。压缩映射在几何上的意思是说点xxx和yyy经TTT映射后,它们像的距离缩短了,不超过dxydxy的α\alphaα倍α1α1。原创 2024-07-27 17:31:23 · 1058 阅读 · 0 评论 -
泛函分析基础7-1-度量空间6-压缩映射原理4:皮卡定理【常微分方程解的存在性和唯一性定理】
设XXX是度量空间,TTT是XXX到XXX中 的映射,如果存在一个数α0α1α0α1使得对所有的xy∈Xxy∈XdTxTy⩽αdxy1dTxTy⩽αdxy1则称TTT是压缩映射。压缩映射在几何上的意思是说点xxx和yyy经TTT映射后,它们像的距离缩短了,不超过dxydxy的α\alphaα倍α1α1。原创 2024-07-27 17:32:40 · 688 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间1:设X是一非空集合,在X中定义了元素的加法运算及实/复数与X中元素的乘法运算,且满足加法、数乘法则,则称X按上述计算法则成为线性/向量空间,其元素称为向量
在许多数学问题和实际问题中,我们遇到的空间不仅要求有极限运算,而且还要。定义了元素的加法运算和实数(或复数)与。(1)关于加法成为交换群,即对任意。求有所谓的加法和数乘的代数运算,原创 2024-05-23 00:20:27 · 709 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间2:子空间、平凡的子空间、真子空间、线性组合
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-07-24 21:46:49 · 281 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间3:spanM(由M张成的线性包)【设M为X的一个非空子集,M中任意有限个向量线性组合全体记为spanM,称为由M张成的线性包】
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-06-17 22:00:39 · 475 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间4:线性相关/无关【设x₁…xₙ是线性空间X中的向量,若存在n个不全为零的数α₁…αₙ使α₁x₁+…+αₙxₙ=0,则称x₁…xₙ线性相关,否则线性无关】
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-06-17 22:03:18 · 144 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间5:线性无关子集【设M是线性空间X的一个子集,若M中任意有限个向量都线性无关,则称M是X中线性无关子集】
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-06-17 22:02:43 · 143 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间6:线性无关【设M和L为X中两个子集,若M中任何向量与L中任何向量都线性无关,则称M和L线性无关】【在实数域上线性无关的向量组在复数域中可能线性相关】
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-06-17 22:02:05 · 163 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间7:维数、基【设X是线性空间,M是X中线性无关子集,若spanM=X,则称M的基数为X的维数,记为dimX,M称为X的一组基】【有限维空间的维数不随基改变】
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-06-17 22:01:25 · 421 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间8:欧氏空间ℝⁿ的标准基【e₁=(1,0,0,⋯,0),e₂=(0,1,0,⋯,0),eₙ=(0,0,0,⋯,1)】
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-06-11 23:11:24 · 142 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间1-线性空间9:C[a,b]是无限维线性空间
设XXX是一非空集合,在XXX中定义了元素的加法运算和实数(或复数)与XXX中元素的乘法运算,满足下列条件:关于加法成为交换群,即对任意xy∈Xxy∈X存在u∈Xu \in Xu∈X与之对应,记为uxyuxy称为xxx与yyy的和,满足xyyx;xyyx;xyzxyz任何xyz∈X;( x + y ) + z = x + ( y + z ) ( 任 何 x , y , z \in X );xyz。原创 2024-06-10 22:37:36 · 260 阅读 · 0 评论 -
泛函分析基础7-2-赋范线性空间2:范数【设X是线性空间,若对每个向量x∈X,有一确定的实数,记为∥x∥与之对应,且满足∥x∥⩾0、∥x+y∥⩽∥x∥+∥y∥等,则称∥x∥为向量x的范数】
8赋范线性空间和巴拿赫空间在泛函分析中,特别重要和有用的一类度量空间是赋范线性空间.在赋范线性空间中的元素可以相加或者数乘,元素之间不仅有距离,而且每个元素有类似于普通向量长度的称为范数的量.定义1设 XXX 是实(或复)的线性空间,如果对每个向量 x∈X,x \in X ,x∈X, 有一个确定的实数,记为 ∥x∥\| x \|∥x∥ 与之对应,并且满足1∘∥x∥⩾0,1 ^ { \circ } \| x \| \geqslant 0 ,1∘∥x∥⩾0, 且 ∥x∥=0\| x \| = 0∥原创 2024-05-23 00:28:32 · 717 阅读 · 0 评论