
sklearn
文章平均质量分 60
sklearn
u013250861
这个作者很懒,什么都没留下…
展开
-
sklearn:中使用labelEncoder【将类别型特征统一转化成0-len(类别性特征)范围的数字】
其中,Label Encoder是最简单的一种encode方法,并在sklearn.preprocessing中有实现方法,目的是将类别型特征统一转化成0-len(类别性特征)范围的数字。原创 2023-02-09 21:03:19 · 1776 阅读 · 0 评论 -
sklearn评价函数:classification_report()【分析不同类别的准确率,召回率,F1值,从而便于按照类别查看准确率、召回率】、confusion_matrix()
本博客采取的例子为垃圾邮件预测。预测结果(标签)为0或1.一、classification_report()classification_report用来分析不同类别的准确率,召回率,F1值等,从而便于按照类别查看准确率、召回率。from sklearn.metrics import classification_reporty_true = [0, 1, 2, 2, 2]y_pred = [0, 0, 2, 2, 1]target_names = ['class 0', 'class 1',原创 2022-05-17 23:08:00 · 1229 阅读 · 0 评论