
高等代数
文章平均质量分 84
线性代数
u013250861
这个作者很懒,什么都没留下…
展开
-
向量运算:①点积(Dot Product,标量,大小为原两向量对应元素乘积之和)【内积/数量积】、②叉积(Cross Product,对偶/法向量,长度为原两向量平行四边形面积大小)【外积/向量积】
向量的内积也叫向量的数量积、点积。a⋅b∣a∣∣b∣cosθ其中θ是这两个向量的夹角。对于向量的内积,最重要的一个结论是:定理1:两向量垂直的充分必要条件是它们的内积为 0 ,即a⊥b⟺a⋅b0这个定理我们几乎不用证明了,因为从定义来看,如果两个向量都不零向量,则只能是夹角θ2π。而零向量的方向是任意的,零向量与任垂直何向量都垂直。坐标下的内积:如果aa1a2a3bb1b2b3,则a⋅。原创 2024-02-04 00:20:34 · 1153 阅读 · 0 评论 -
高等代数(一)-多项式1:数域
我们知道, 数是数学的一个最基本的概念. 我们的讨论就从这里开始. 在历史上,除法总是可以做的. 因此, 在数的不同的范围内同一个问题的回答可能是不同的.例 3 所有奇数组成的数集, 对于乘法是封闭的, 但对于加、减法不是封闭的.数的概念经历了一个长期发展的过程, 大体上看, 是由正整数到整数、有理数,显然,全体有理数组成的集合、全体实数组成的集合、全体复数组成的集合都是数。又如,任意两个整数的商不一定是整数,这就是说, 限制在整数的范围内,按照所研究的问题,我们常常需要明确规定所考虑的数的范围.辟如说,原创 2024-01-28 01:37:40 · 661 阅读 · 0 评论 -
高等代数(一)-多项式02:一元多项式
由以上证明还看出, 多项式乘积的首项系数就等于它的因子首项系数的乘积.当这符号是未知数时,它是中学所学代数中的多项式.看应用需要,在中学所讲的代数中,两个多项式可以相加、相减、相乘.例如,注意,我们这儿定义的多项式是符号或文字的形式表达式.在对多项式的讨论中,我们总是以一个预先给定的数域。显然,上面得出的结果都可以推广到多个多项式的情形.系数全为零的多项式称为零多项式, 记为 0.零多项式是唯一不定义次数的多项式. 多项式。对于多项式的乘法, 可以证明, 如果。中的一元多项式的全体, 称为数域。原创 2024-02-02 21:20:35 · 1009 阅读 · 0 评论 -
高等代数(一)-多项式03:整除的概念
但是乘法的逆运算------除法并不是普遍可以做的.因之整除就成了两个多项式之间的一种特殊的关系.最后我们指出, 两个多项式之间的整除关系不因为系数域的扩大而改变.零次多项式, 也就是非零常数,能整除任一个多项式,因为当。也能用一个多项式去除另一个多项式,求得商和余式.例如,设。所得的商式及余式都是一样的. 因此, 如果在。有相同的因式, 也有相同的倍式. 因之,中的多项式.从带余除法可以看出, 不论把。时,带余除法给出了整除性的一个判别法.中进行的, 以后就不每次重复说明了.原创 2024-02-03 12:38:08 · 1732 阅读 · 0 评论 -
高等代数(一)-多项式04:最大公因式
§ 4 最大公因式如果多项式 φ(x)\varphi(x)φ(x) 既是 f(x)f(x)f(x) 的因式, 又是 g(x)g(x)g(x) 的因式, 那么φ(x)\varphi(x)φ(x) 就称为 f(x)f(x)f(x) 与 g(x)g(x)g(x) 的一个公因式.在公因式中占有特殊重要地位的是最大公因式.定义 6 设 f(x),g(x)f(x), g(x)f(x),g(x) 是 P[x]P[x]P[x] 中两个多项式. P[x]P[x]P[x] 中多项式 d(x)d(x)d(x)称为 f(原创 2024-02-03 12:38:32 · 3159 阅读 · 0 评论 -
高等代数(一)-多项式05:因式分解定理
应该指出,因式分解定理虽然在理论上有其基本重要性,但是它并没有给出一个具体的分解多项式的方法.是实数域上的不可约多项式,但是它在复数域上可以分解成两个一次多项式的乘积,(2), (3), (4) 合起来即为所要证的. 这就证明了分解的唯一性.因而不是不可约的.这就说明了, 一个多项式是否不可约是依赖于系数域的.的标准分解式中出现的不可约多项式方幕的乘积, 所带的方幂的指数等于它在。实际上, 对于一般的情形, 普遍可行的分解多项式的方法是不存在的.的多项式一定是不可约的.由此可知, 不可约多项式。原创 2024-02-03 12:38:50 · 1601 阅读 · 0 评论 -
高等代数(一)-多项式06:重因式
这个推论表明,判别一个多项式有没有重因式,可以通过代数运算------瘄转相除法来解决,这个方法甚至是机械的.因为没有一般的方法来求一个多项式的标准分解式,判别有没有重因式的问题就需要用另外的方法解决.有些时候,特别是在讨论与解方程有关的问题时,我们常常希望所考虑的多项式没有重因式.因此, 这是一个去掉因式重数的有效办法.这是一个没有重因式的多项式,但是它与。的那些不可约因式是单因式,指数。的那些不可约因式是重因式.的因式. 反过来, 如果。为此, 以下的结果是有用的.具有完全相同的不可约因式.原创 2024-02-03 12:39:07 · 1254 阅读 · 0 评论 -
高等代数(一)-多项式07:多项式函数
如果两个多项式定义相同的函数,就称为恒等,上面的结论表明,多项式的恒等与多项式相等实际上是一致的.换句话说,数域上的多项式既可以作为形式表达式来处理,也可以作为函数来处理.每个多项式函数都可以由一个多项式来定义.不同的多项式会不会定义出相同的函数呢?直到现在为止,我们始终是纯形式地讨论多项式,也就是把多项式看作形式的表达式.在这一节, 我们将从另一个观点, 即函数的观点来考察多项式.中的数进行运算时适合与数的运算相同的运算规律,由上面的推论与根的重数的定义, 显然。不同的多项式定义的函数也不相同.原创 2024-02-03 12:39:22 · 1050 阅读 · 0 评论 -
高等代数(一)-多项式08:复系数与实系数多项式的因式分解
但是并没有给出根的一个具体的求法.高次方程求根的问题还远远没有解决.特别是在应用方面,方程求根是一个重要的问题,这个问题是相当复杂的,现在来看一下在复数域与实数域上多项式的因式分解.复数域与实数域既然都是数域,因此前面所得的结论对它们也是成立的. 但是这两个数域又有它们的特殊性,由此可知,在复数域上所有次数大于 1 的多项式全是可约的.的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.年首先证明的.由于当时代数学研究的主要对象为多项式理论,这个定理是关于多项式理论的非常有用、非常基本的结论,原创 2024-02-03 12:39:33 · 1778 阅读 · 0 评论 -
高等代数(一)-多项式09:有理系数多项式
这一点是有理数域与实数域、复数域不同的.在复数域上只有一次多项式才是不可约的,而在实数域上不可约多项式只有一次的和某些二次的.我们不打算一般地来讨论这些问题,一个本原多项式能否分解成两个次数较低的有理系数多项式的乘积与它能否分解成两个次数较低的整系数多项式的乘积的问题是一致的.作为准备,我们先证。如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它二定能分解成两个次数较低的整系数多项式的乘积.系数多项式的因式分解问题, 并进而解决求有理系数多项式的有理根的问题.原创 2024-02-03 12:39:46 · 1473 阅读 · 0 评论 -
高等代数(一)-多项式10:多元多项式
§ 10 多元多项式在前面我们讨论了一元多项式的基本性质.但是除去一元多项式外, 还有含多个文字的多项式, 即多元多项式, 如 x2−y2,x3+y3+z3−3xyzx^{2}-y^{2}, x^{3}+y^{3}+z^{3}-3 x y zx2−y2,x3+y3+z3−3xyz等. 现在就来简单地介绍一下有关多元多项式的一些概念.设 PPP 是一个数域, x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots, x_{n}x1,x2,⋯,xn 是 nnn 个文字. 形式为ax1k1原创 2024-02-03 12:39:59 · 1292 阅读 · 0 评论 -
高等代数(一)-多项式11:对称多项式
§ 11 对称多项式对称多项式是多元多项式中常见的一种,本节就来介绍关于对称多项式的基本事实.对称多项式的来源之一以及它应用的一个重要方面, 是一元多项式根的研究.因此我们从一元多项式的根与系数的关系开始.设f(x)=xn+a1xn−1+⋯+anf(x)=x^{n}+a_{1} x^{n-1}+\cdots+a_{n}f(x)=xn+a1xn−1+⋯+an是 P[x]P[x]P[x] 中的一个多项式. 如果 f(x)f(x)f(x) 在数域 PPP 中有 nnn 个根α1,α2,⋯ ,α原创 2024-02-03 12:40:10 · 2260 阅读 · 0 评论 -
高等代数(二)-行列式01:引言
我们解过一元、二元、三元以至四元一次方程组.这一章和下一章主要就是讨论一般的多元一次方程组,即线性方程组.这一章是引进行列式来解线性方程组,而下一章则在更一般的情况下来讨论解线性方程组的问题.解方程是代数中一个基本的问题,特别是在中学所学代数中,解方程占有重要的地位.因此这个问题是读者所熟悉的. 辟如说, 如果我们知道了一段导线的电阻。求出来. 这就是通常所谓解一元一次方程的问题. 在中学所学代数中,线性方程组的理论在数学中是基本的也是重要的内容.时, 上述三元线性方程组有唯一解,解为。原创 2024-02-03 12:40:39 · 872 阅读 · 0 评论 -
高等代数(二)-行列式02:排列
这样一个变换称为一个对换. 例如, 经过 1,2 对换,排列 2431 就变成了 1432 ,定义 3 逆序数为偶数的排列称为偶排列,逆序数为奇数的排列称为奇排列.把一个排列中某两个数的位置互换, 而其余的数不动, 就得到另一个排列.证明 先看一个特殊的情形, 即对换的两个数在排列中是相邻的情形. 排列。排列的逆序数的奇偶性总是变了. 因之,在这个特殊的情形,定理是对的.这就是说,经过一次对换, 奇排列变成偶排列,偶排列变成奇排列.例如, 2431 是偶排列, 45321 是奇排列,原创 2024-02-03 12:40:49 · 955 阅读 · 0 评论 -
高等代数(二)-行列式03:n 阶行列式
的奇偶性不改变. 这就是说, 对 (11) 作一次元素的对换不改变 (12) 的值.性质 1 表明, 在行列式中行与列的地位是对称的, 因之凡是有关行的性质,这一项外,其余的项全是 0 . 而这一项的列指标所成的排列是一个偶排列,下面我们所谈的行列式的性质大多是对行来说的, 对于列也有相同的性质,而每一项乘积都是由行列式中位于不同的行和不同的列的元素构成的,不同列.所以它们的乘积是这个行列式唯一的一项.前面所带的符号为。中的一个数.在行列式的定义中,为了决定每一项的正负号,我们把。原创 2024-02-03 12:42:12 · 1073 阅读 · 0 评论 -
高等代数(二)-行列式04:n 阶行列式的性质
§4n§ 4 n§4n 阶行列式的性质行列式的计算是一个重要的问题,也是一个很麻烦的问题. nnn 阶行列式一共有nnn !项, 计算它就需做 n!(n−1)n !(n-1)n!(n−1) 个乘法. 当 nnn 较大时, nnn !是一个相当大的数字. 直接从定义来计算行列式几乎是不可能的事.因此我们有必要进一步讨论行列式的性质. 利用这些性质可以化简行列式的计算.在行列式的定义中,虽然每一项是 nnn 个元素的乘积, 但是由于这 nnn个元素是取自不同的行与列, 所以对于某一确定的行中 nnn原创 2024-02-03 12:42:22 · 1243 阅读 · 0 评论 -
高等代数(二)-行列式05:行列式的计算
为了计算行列式,我们也可以对矩阵进行初等列变换. 有时候, 同时用初等行变换。为了便于叙述并考虑到以后的应用,我们引进矩阵及矩阵的初等行变换的概念.在上面所举的例子中,第一个是有理数域上的矩阵,第二个是复数域上的矩阵.这里,第一步是互换第 1,2 两行, 以下都是把一行的倍数加到另一行.这个方法完全是机械的,因而可以用计算机按这个方法来进行行列式的计算.下面我们利用行列式的性质给出一个计算行列式的方法.矩阵的初等行变换与初等列变换统称为初等变换.和初等列变换,行列式的计算可以更简单些.原创 2024-02-03 12:42:34 · 1095 阅读 · 0 评论 -
高等代数(二)-行列式06:行列式按一行 (列) 展开
§ 6 行列式按一行 (列) 展开在 §4§ 4§4 我们看到, 对于 nnn 阶行列式, 有∣a11a12⋯a1n⋮⋮⋮ai1ai2⋯ain⋮⋮⋮an1an2⋯ann∣=ai1Ai1+ai2Ai2+⋯+ainAin,i=1,2,⋯ ,n.\left|\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1 n} \\ \vdots & \vdots & & \vdots \\ a_{i 1} & a_{i 2} & \cdots & a_原创 2024-02-03 12:42:45 · 963 阅读 · 0 评论 -
高等代数(二)-行列式07:克拉默 (C ramer) 法则
§ 7 克拉默 (C ramer) 法则现在我们来应用行列式解决线性方程组的问题.在这里只考虑方程个数与未知量的个数相等的情形. 以后会看到,这是一个重要的情形.至于更一般的情形留到下一章讨论.下面我们将得出与二元和三元线性方程组相仿的公式.本节的主要结果是定理 4 如果线性方程组{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯⋯⋯⋯an1x1+an2x2+⋯+annxn=bn\left\{\begin{array}{c} a_{11} x原创 2024-02-03 12:42:59 · 1070 阅读 · 0 评论 -
高等代数(二)-行列式08:拉普拉斯( Laplace) 定理 - 行列式的乘法规则
§ 8 拉普拉斯( Laplace) 定理 - 行列式的乘法规则这一节介绍行列式的拉普拉斯定理,这个定理可以看成是行列式按一行展开公式的推广.首先我们把余子式和代数余子式的概念加以推广.定义 9 在 nnn 阶行列式 DDD 中任意选定 kkk 行 kkk 列 (k⩽n)(k \leqslant n)(k⩽n),位于这些行和列的交点上的 k2k^{2}k2 个元素按原来的次序组成的 kkk 阶行列式MMM, 称为行列式 DDD 的 kkk 阶子式. 当 k原创 2024-02-03 12:43:09 · 3056 阅读 · 0 评论 -
高等代数(三)-线性方程组01:消 元 法
§1 消 元 法现在来讨论一般线性方程组.所谓一般线性方程组是指形式为{a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯⋯⋯⋯as1x1+as2x2+⋯+annxn=b4\left\{\begin{array}{c} a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}, \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}, \\原创 2024-02-03 12:43:21 · 1028 阅读 · 0 评论 -
高等代数(三)-线性方程组02:n 维向量空间
另一方面也由于它与通常的向量一样可以定义运算,并且有许多运算性质是共同的,因而采取这样一个几何的名词有好处.又如一个工厂的原料是来自好多地方,于是一个原料的采购计划就需要同时指出从每个原料产地的采购量.总之,在国民经济的问题中,我们也会碰到这种情况.譬如一个工厂生产好几种产品,那么为了说明这个工厂的产量,需要知道它中心的坐标 (3 个数) 以及它的半径, 也就是说, 球的大小和位置需要。显然,一个线性方程组的解的情况是被方程组中方程之间的关系所规定的. 辟如说,原创 2024-02-03 12:44:34 · 862 阅读 · 0 评论 -
高等代数(三)-线性方程组03:线性相关性
§ 3 线性相关性以下我们总是在一固定的数域 PPP 上的 nnn 维向量空间中进行讨论,不再每次说明了.在这一节我们来进一步研究向量之间的关系.两个向量之间最简单的关系是成比例. 所谓向量 α\boldsymbol{\alpha}α 与β\boldsymbol{\beta}β 成比例就是说有一数 kkk, 使α=kβ. \boldsymbol{\alpha}=k \boldsymbol{\beta} \text {. }α=kβ. 在多个向量之间,成比例的关系表现为线性组原创 2024-02-03 12:44:47 · 1197 阅读 · 0 评论 -
高等代数(三)-线性方程组04:矩阵的秩
§ 4 矩阵的秩在上一节我们定义了向量组的秩. 如果我们把矩阵的每一行看成一个向量,那么矩阵就可以认为是由这些行向量组成的. 同样,如果把每一列看成一个向量,那么矩阵也可以认为是由列向量组成的.定义 15 所谓矩阵的行秩就是指矩阵的行向量组的秩,矩阵的列秩就是矩阵的列向量组的秩.例如, 矩阵A=(113102−1400050000)\boldsymbol{A}=\left(\begin{array}{rrrr} 1 & 1 & 3 & 1 \\ 0 & 2 & -1 & 4 \\原创 2024-02-05 22:23:38 · 1259 阅读 · 0 评论 -
高等代数(三)-线性方程组05:线性方程组有解判别定理
在有了向量和矩阵的理论准备之后,我们现在可以来分析一下线性方程组的问题,把这个阶梯形矩阵中最后一列去掉, 那就是线性方程组 (1) 的系数矩阵。时,由克拉默法则, 方程组 (4) 有唯一解, 也就是方程组 (1)证明 先证必要性. 设线性方程组 (1) 有解, 就是说,应该指出, 这个判别条件与以前的消元法是一致的. 我们知道,我们说原方程组无解, 而在后一种情形方程组有解. 实际上,的一组自由未知量. 对 (5) 用克拉默法则, 可以解出。线性表出. 因此,方程组 (1) 有解. I。原创 2024-02-05 22:24:02 · 1016 阅读 · 0 评论 -
高等代数(三)-线性方程组06:线性方程组解的结构
这就是本节要讨论的问题和要得到的主要结果.下面的讨论当然都是对于有解的情况说的,这一点就不再每次都说明了.的和就是 (9) 的另一个解, 也就是说, (9) 不止一个解. 因之, 如果方程 (9)就得到定理的结论. 既然 (9) 的任一个解都能表成 (10) 的形式, 由 2 , 在。的常数项换成 0 , 就得到齐次方程组 (1). 方程组 (1) 称为方程组 (9)代人 (3), 就唯一地确定了方程组 (3) 一一也就是方程组 (1) 的一个解.作为方程组的解的这些向量之间有什么关系呢?原创 2024-02-05 22:24:14 · 1227 阅读 · 0 评论 -
高等代数(三)-线性方程组07:二元高次方程组
现在我们利用已经建立起来的线性方程组的理论给出一个解二元高次方程组的一般方法.(它们可以为零多项式), 我们称行列式 (7) 为它们的结式, 记为。为了这个目的,我们先讨论一下两个一元多项式有非常数的公因式的条件.把线性方程组 (6) 的系数矩阵的行列互换, 再把后边的。与一元方程相仿, 方程组 (8) 的解的个数与多项式。个方程的齐次线性方程组.显然,引理中的条件: “在。有非零解的充分必要条件为它的系数矩阵的行列式等于雾.中有非常数的公因式的充分必要条件是, 在。上的两个非零的多项式, 它们的系数。原创 2024-02-05 22:24:31 · 1202 阅读 · 0 评论 -
高等代数(四)-矩阵01:矩阵概念的一些背景
并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的、表面上完全没有联系的问题,归结成矩阵问题以后却是相同的.这就使矩阵成为数学中一个极其重要的应用广泛的概念,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程.为了使读者对矩阵的概念以及下面要讨论的问题的背景有些了解,我们来介绍一些提出矩阵概念的问题.表示出来. 通常,矩阵 (2) 称为坐标变换 (1) 的矩阵. 在空间的情形,(注意矩阵的符号与行列式的符号的区别.)原创 2024-02-06 00:03:30 · 1131 阅读 · 0 评论 -
高等代数(四)-矩阵02:矩阵的运算
§ 2 矩阵的运算现在我们来定义矩阵的运算, 可以认为它们是矩阵之间一些最基本的关系.下面要定义的运算是矩阵的加法、乘法、矩阵与数的乘法以及矩阵的转置.为了确定起见, 我们取定一个数域 PPP, 以下所讨论的矩阵全是由数域 PPP中的数组成的.1. 加法定义 1 设A=(aij)s×n=(a11a12⋯a1na21a22⋯a2n⋮⋮⋮as1as2⋯asn),B=(bij)i×n=(b11b12⋯b1nb21b22⋯b2n⋮⋮⋮bs1bs2⋯bsn)\begin{array}{l} \bo原创 2024-02-06 00:03:59 · 1106 阅读 · 0 评论 -
高等代数(四)-矩阵03:矩阵乘积的行列式与秩
在这一节我们来看一下矩阵乘积的行列式与秩和它的因子的行列式与秋的关系.用数学归纳法, 定理 1 不难推广到多个因子的情形, 即有。用数学归纳法,定理 2 不难推广到多个因子的情形,即有。即矩阵乘积的行列式等于它的因子的行列式的乘积.的秩 (参看第三章习题 12), 也就是说,证明 这是第二章 88 中已经证明了的结论.矩阵是非退化的充分必要条件是它的秩等于。因而前者的秩不可能超过后者的秩,这就是说,即乘积的秩不超过各因子的秩.的行向量. 由计算可知,关于矩阵乘积的秩, 我们有。的列向量. 由计算可知,原创 2024-02-06 00:04:12 · 1231 阅读 · 0 评论 -
高等代数(四)-矩阵04:矩阵的逆
首先我们指出, 由于矩阵的乘法规则, 只有方阵才能满足 (1) (读者自己证明).定理 3 不但给出了一矩阵可逆的条件, 同时也给出了求逆矩阵的公式 (4).按这个公式来求逆矩阵, 计算量一般是非常大的. 在以后我们将给出另一种求法.利用矩阵的逆, 可以给出克拉默法则的另一种推导法. 线性方程组。阶方阵中的地位类似于 1 在复数中的地位.一个复数。阶单位矩阵. 因之, 从乘法的角度来看,是唯一的 (如果有的话). 事实上, 假设。这一节讨论的矩阵, 如不特别说明, 都是。, 适合等式 (1) 的矩阵。原创 2024-02-06 00:04:24 · 1105 阅读 · 0 评论 -
高等代数(四)-矩阵05:矩阵的分块
85 矩阵的分块在这一节,我们来介绍一个在处理阶数较高的矩阵时常用的方法,即矩阵的分块.有时候,我们把一个大矩阵看成是由一些小矩阵组成的,就如矩阵是由数组成的一样.特别在运算中,把这些小矩阵当作数一样来处理.这就是所谓矩阵的分块.为了说明这个方法,下面看一个例子.在矩阵A=[10000100−12101101]=(E20A1E2)A=\left[\begin{array}{cc:cc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \hdashline-1原创 2024-02-06 00:04:40 · 1135 阅读 · 0 评论 -
高等代数(四)-矩阵06:初等矩阵
这一节我们来建立矩阵的初等变换与矩阵乘法的联系,并在这个基础上,给出用初等变换求逆矩阵的方法.经过一系列初等变换得到.等价是矩阵间的一种关系.不难证明,它具有自反性、对称性与传递性.显然, 初等矩阵都是方阵, 每个初等变换都有一个与之相应的初等矩阵. 互换矩阵。如果同时用行与列的初等变换,那么矩阵还可以进一步化简.为了方便,我们引人。不难看出, 初等矩阵都是可逆的, 它们的逆矩阵还是初等矩阵. 事实上。当然, 同样可以证明, 可逆矩阵也能用初等列变换化成单位矩阵,原创 2024-02-06 00:04:56 · 1066 阅读 · 0 评论 -
高等代数(四)-矩阵07:分块乘法的初等变换及应用举例
同样, 用它们右乘任一矩阵, 进行分块乘法时也有相应的结果, 我们不写出了.这种形状的矩阵在求行列式、逆矩阵和解决其他问题时是比较方便的, 因此 (3)对它进行两行 (列) 对换, 某一行 (列) 左乘 (右乘)一个矩阵。和初等矩阵与初等变换的关系一样, 用这些矩阵左乘任一个分块矩阵。外, 其他元素皆为零. 故由初等矩阵与初等变换的关系,易得。只要分块乘法能够进行, 其结果就是对它进行相应的变换, 即。所对应的初等变换是某行加上另外一行的倍数,时,一阶矩阵既是上三角形的又是下三角形的.原创 2024-02-06 00:05:10 · 1424 阅读 · 0 评论 -
高等代数(五)-二次型01:二次型及其矩阵表示
§1§ 1§1 二次型及其矩阵表示在解析几何中, 我们看到,当坐标原点与中心重合时,一个有心二次曲线的一般方程是ax2+2bxy+cy2=f.a x^{2}+2 b x y+c y^{2}=f .ax2+2bxy+cy2=f.为了便于研究这个二次曲线的几何性质, 我们可以选择适当的角度 θ\thetaθ,作转轴 (反时针方向转轴){x=x′cosθ−y′sinθ,y=x′sinθ+y′cosθ,\left\{\begin{array}{l} x=x^{\prime} \cos \t原创 2024-02-05 22:24:43 · 1368 阅读 · 0 评论 -
高等代数(五)-二次型02:标 准 形
§2§ 2§2 标 准 形现在来讨论用非退化的线性替换化简二次型的问题.可以认为,二次型中最简单的一种是只包含平方项的二次型d1x12+d2x22+⋯+dnxn2. d_{1} x_{1}^{2}+d_{2} x_{2}^{2}+\cdots+d_{n} x_{n}^{2} \text {. }d1x12+d2x22+⋯+dnxn2. 这一节的主要结果是定理 1 数域 PPP 上任意一个二次型都可以经过非退化的线性替换变成平方和(1)的形式.证明 下面的证明实际上是一个具体地把二次原创 2024-02-05 22:24:59 · 1126 阅读 · 0 评论 -
高等代数(五)-二次型03:唯 一 性
应该指出,虽然实二次型的标准形不是唯一的,但是由上面化成规范形的过程可以看出,标准形中系数为正的平方项的个数与规范形中正平方项的个数是一致的.这就说明,在一般的数域内,二次型的标准形不是唯一的,而与所作的非退化线性替换有关.经过非退化线性替换之后,二次型矩阵的秩是不变的.标准形的矩阵是对角矩阵,我们看到, 经过非退化线性替换, 二次型的矩阵变成一个与之合同的矩阵.至于标准形中的系数, 就不是唯一确定的. 譬如上一节的例子, 二次型。系数不为零的平方项的个数是唯一确定的,与所作的非退化线性替换无关,原创 2024-02-05 22:25:11 · 1819 阅读 · 0 评论 -
高等代数(五)-二次型04:正定二次型
§ 4 正定二次型在实二次型中,正定二次型占有特殊的地位.作为本章的结束,我们给出它的定义以及常用的判别条件.定义 4 实二次型 f(x1,x2,⋯ ,xn)f\left(x_{1}, x_{2}, \cdots, x_{n}\right)f(x1,x2,⋯,xn) 称为正定的,如果对于任意一组不全为零的实数 c1,c2,⋯ ,cnc_{1}, c_{2}, \cdots, c_{n}c1,c2,⋯,cn, 都有f(c1,c2,⋯ ,cn)>0f\left(c_{1}, c_{2}, \原创 2024-02-05 22:25:27 · 875 阅读 · 0 评论 -
高等代数(六)-线性空间01:集合、映射
不包含任何元素的集合称为空集合.例如,一个无解的线性方程组的解集合就是空集合.把空集合也看作是集合,这一点与通常的习惯不很一致,但是在数学上有好处,同时也不是完全没有道理的,正如我们把。中的映射都是双射.显然,对于由有限多个元素组成的集合,即所谓有限集合来说,两个集合之间存在双射的充分必要条件是它们所含元素的个数相同.于是对有限集合。例如,全体偶数组成的集合是全体整数组成的集合的子集合.按定义,每个集合都是它自身的子集合.我们规定,空集合是任一集合的子集合.由无穷多个元素组成的集合是不可能用列举法给出的.原创 2024-02-05 22:25:39 · 1015 阅读 · 0 评论 -
高等代数(六)-线性空间02:线性空间的定义与简单性质
这一节我们来介绍它的定义,并讨论它的一些最简单的性质.线性空间也是我们碰到的第一个抽象的概念.这两种运算的定义也是不同的. 为了抓住它们的共同点,把它们统一起来加以研究,从这些例子中我们看到, 所考虑的对象虽然完全不同, 但是它们有一个共同点,我们看到, 不少几何和力学对象的性质是可以通过向量的这两种运算来描述的.例 3 对于函数, 也可以定义加法和函数与实数的数量乘法. 臂如说,不同的对象与不同的数域相联系. 当我们引入抽象的线性空间的概念时,例 6 全体实函数, 按函数的加法和数与函数的数量乘法,原创 2024-02-05 22:25:55 · 1182 阅读 · 0 评论