
概率论与数理统计
文章平均质量分 86
概率论与数理统计
u013250861
这个作者很懒,什么都没留下…
展开
-
概率论与数理统计教程(一)-随机事件与概率01:随机事件及其运算
上述讨论表明:在同一个随机现象中,不同的设置可获得不同的随机变量,如何设置可按需要进行.(相同的只计人一次) 组成的新事件” (见图 1.1.5).或用概率论的语言说"事件。而随机变量的含义是人们按需要设置出来的.下面通过一些例子来说明是如何进行设置的.中公共的样本点组成的新事件” (见图 1.1.6).或用概率论的语言说"事件。中的样本点组成的新事件” (见图 1.1.8), 或用概率论的语言说 "个不同的事件. 分割方法常在一些问题的研究中被采用,它可使事件域得以简化.原创 2024-02-07 21:18:48 · 1004 阅读 · 0 评论 -
概率论与数理统计教程(一)-随机事件与概率02:概率的定义及其确定方法
§1.2§ 1.2§1.2概率的定义及其确定方法在这一节中,我们要给出概率的定义及其确定方法,这是概率论中最基本的一个问题.简单而直观的说法就是:概率是随机事件发生的可能性大小.对此我们先看下面一些经验事实:(1)随机事件的发生是带有偶然性的,但随机事件发生的可能性是有大小之分的,例如口袋中有 10 个相同大小的球,其中 9 个黑球, 1 个红球, 从口袋中任取 1球,人们的共识是:取出黑球的可能性比取出红球的可能性大.(2)随机事件发生的可能性是可以设法度量的,就好比一根木棒有长度,一块土原创 2024-02-07 21:38:37 · 1227 阅读 · 0 评论 -
概率论与数理统计教程(一)-随机事件与概率02:概率的定义及其确定方法
§1.2§ 1.2§1.2概率的定义及其确定方法在这一节中,我们要给出概率的定义及其确定方法,这是概率论中最基本的一个问题.简单而直观的说法就是:概率是随机事件发生的可能性大小.对此我们先看下面一些经验事实:(1)随机事件的发生是带有偶然性的,但随机事件发生的可能性是有大小之分的,例如口袋中有 10 个相同大小的球,其中 9 个黑球, 1 个红球, 从口袋中任取 1球,人们的共识是:取出黑球的可能性比取出红球的可能性大.(2)随机事件发生的可能性是可以设法度量的,就好比一根木棒有长度,一块土原创 2024-02-07 21:39:13 · 989 阅读 · 0 评论 -
概率论与数理统计教程(一)-随机事件与概率03:概率的性质
§ 1.3概率的性质利用概率的公理化定义(非负性、正则性和可列可加性),可以导出概率的一系列性质.以下我们逐个给出概率的一些常用性质.首先,在概率的正则性中说明了必然事件 Ω\OmegaΩ 的概率为 1 .那么可想而知,不可能事件 ∅\varnothing∅ 的概率应该为 0,下面性质正说明了这一点.性质 1.3.1 P(∅)=0P(\varnothing)=0P(∅)=0.证明由于任何事件与不可能事件之并仍是此事件本身,所以Ω=Ω∪∅∪∅⋯∪∅∪⋯ .\Omega=\Omega \cup原创 2024-02-07 21:40:58 · 1142 阅读 · 0 评论 -
概率论与数理统计教程(一)-随机事件与概率03:概率的性质
§ 1.3概率的性质利用概率的公理化定义(非负性、正则性和可列可加性),可以导出概率的一系列性质.以下我们逐个给出概率的一些常用性质.首先,在概率的正则性中说明了必然事件 Ω\OmegaΩ 的概率为 1 .那么可想而知,不可能事件 ∅\varnothing∅ 的概率应该为 0,下面性质正说明了这一点.性质 1.3.1 P(∅)=0P(\varnothing)=0P(∅)=0.证明由于任何事件与不可能事件之并仍是此事件本身,所以Ω=Ω∪∅∪∅⋯∪∅∪⋯ .\Omega=\Omega \cup原创 2024-02-07 21:41:33 · 1111 阅读 · 0 评论 -
概率论与数理统计教程(一)-随机事件与概率04:条件概率
§1.4§ 1.4§1.4条件概率条件概率是概率论中的一个既重要又实用的概念.1.4.1条件概率的定义所谓条件概率, 是指在某事件 BBB 发生的条件下,另一事件 AAA 发生的概率,记为P(A∣B)P(A \mid B)P(A∣B), 它与 P(A)P(A)P(A)是不同的两类概率.下面用一个例子说明之.例 1.4.1 考察有两个小孩的家庭,其样本空间为Ω={bb,bg,gb,gg}\Omega=\{b b, b g, g b, g g\}Ω={bb,bg,gb,gg}, 其中 bbb 代表原创 2024-02-07 21:43:56 · 1067 阅读 · 0 评论 -
概率论与数理统计教程(一)-随机事件与概率05:独立性
例 1.5.7 某彩票每周开奖一次, 每次提供十万分之一的中奖机会, 且各周开奖是相互独立的. 若你每周买一张彩票, 坚持十年 (每年 52 周)之久, 你从未中奖的可能性是多少?两个事件之间的独立性是指:一个事件的发生不影响另一个事件的发生.这在实际问题中是很多的,譬如在掷两颗骰子的试验中,记事件。这也可看出: 两个正常工作概率为 0.9 的元件组成的串联系统, 其系统正常工作的概率下降为 0.81 .个相互独立的事件中的任意一部分内仍是相互独立的,而且任意一部分与另一部分也是独立的.原创 2024-02-07 21:47:08 · 1116 阅读 · 0 评论 -
概率论与数理统计教程(二)-随机变量及其分布01:随机变量及其分布
为了进行定量的数学处理, 必须把随机现象的结果数量化.这就是引进随机变量的原因.随机变量概念的引进使得对随机现象的处理更简单与直接,也更统一而有力.本章我们将主要讨论一维随机变量及其分布.§ 2.1 随机变量及其分布在第一章中我们曾提及随机变量,在那里我们把"用来表示随机现象结果的变量"称为随机变量, 其中"表示"一词的含义是什么?这是要进一步探讨的问题.2.1.1 随机变量的概念在随机现象中有很多样本点本身就是用数量表示的,由于样本点出现的随机性,其数量呈现为随机变量, 譬如- 郑一颗原创 2024-02-07 21:50:02 · 1387 阅读 · 0 评论 -
概率论与数理统计教程(二)-随机变量及其分布02:随机变量的数学期望
法郎,只有一种情况 (乙乙)下甲获 0 法郎. 因为睹技不相上下, 所以甲获得 100。"均值"更形象易懂.对上例而言, 也就是再赌下去的话, 甲"平均"可以赢 75 法郎.各出赌注 50 法郎, 每局中无平局.他们约定, 谁先赢三局, 则得全部奢本 100。这种分法不仅考虑了已赌局数, 而且还包括了对再赌下去的一种"期望", 它比 (1)参与同类指标的比较. 如一盘磁带上的缺陷数有多有少, 有随机性, 不好比较,则扔掉再取一只, 试求在取到合格品之前, 已取出的不合格品只数的数学期望.原创 2024-02-07 21:53:14 · 1034 阅读 · 0 评论 -
概率论与数理统计教程(二)-随机变量及其分布03:随机变量的方差与标准差
§ 2.3 随机变量的方差与标准差随机变量 XXX 的数学期望 E(X)E(X)E(X) 是分布的一种位置特征数, 它刻画了 XXX的取值总在 E(X)E(X)E(X) 周围波动. 但这个位置特征数无法反映出随机变量取值的“波动大小”, 譬如 XXX 与 YYY 的分布列分别为XXX -1 0 1PPP 1/31 / 31/3 1/31 / 31/3 1/31 / 31/3YYY -10 0 10PPP 1原创 2024-02-10 23:02:30 · 1095 阅读 · 0 评论 -
概率论与数理统计教程(二)-随机变量及其分布04:常用离散分布
§ 2.4 常用离散分布每个随机变量都有一个分布, 不同的随机变量可以有不同的分布,也可以有相同的分布. 随机变量有千千万万个, 但常用分布并不是很多,熟悉这些常用分布对认识其他分布会很有启发. 常用分布亦分为两类:离散分布和连续分布, 本节讲常用离散分布, 下节讲常用连续分布.2.4.1 二项分布一、二项分布如果记 XXX 为 nnn 重伯努利试验中成功 (记为事件 AAA ) 的次数, 则 XXX的可能取值为 0 , 1,⋯ ,n1, \cdots, n1,⋯,n. 记 ppp 为每次试原创 2024-02-10 23:03:34 · 982 阅读 · 0 评论 -
概率论与数理统计教程(二)-随机变量及其分布05:常用连续分布
§ 2.5 常用连续分布在连续分布场合, 密度函数与分布函数是可以相互导出的, 含有相同信息,各有各的用处, 但在图形上密度函数对各种连续分布的特性能得到直观显示.如正态与偏态、单峰与平顶都是依密度函数图形命名的,因而人们对密度函数更为注意.2.5.1 正态分布正态分布是概率论与数理统计中最重要的一个分布, 高斯 (Gauss, 1777-1855)在研究误差理论时首先用正态分布来刻画误差的分布,所以正态分布又称为高斯分布.本书第四章的中心极限定理表明:一个随机变量如果是由大量微小的、独立原创 2024-02-10 23:04:51 · 1009 阅读 · 0 评论 -
概率论与数理统计教程(二)-随机变量及其分布06:随机变量函数的分布
但这两个随机变量是不相等的.所以我们要明确,分布相同与随机变量相等是两个完全不同的概念.中有某些值相等时, 则把那些相等的值分别合并, 并把对应的概率相加即可.利用以上定理,我们来证明几个很有用的结论,并用定理形式表示.离散随机变量的函数仍是一个离散随机变量. 但连续随机变量。下面对离散和连续两种场合分别讨论随机变量函数的分布.的函数, 同样也是一个随机变量. 在实际问题中,寻求随机变量函数的分布, 是概率论的基本技巧,离散随机变量函数的分布是比较容易求得的. 设。我们经常感兴趣的问题是: 已知随机变量。原创 2024-02-10 23:05:54 · 1211 阅读 · 0 评论 -
概率论与数理统计教程(二)-随机变量及其分布07:分布的其他特征数
随机变量的取值有量纲,不同量纲的随机变量用其方差(或标准差)去比较它们的波动大小不太合理.80 分, 另一半同学的成绩高于 80 分. 而如果考试成绩的均值是 80 分,正态分布的偏度与峰度皆为 0 . 在实际中一个分布的偏度与峰度皆为 0 或近似为。随机变量还有一些其他的特征数, 以下逐一给出它们的定义, 且解释它们的含义.(3)偏度与峰度都是描述分布形状的特征数, 它们的设置都是以正态分布为基准,因为标准差的量纲与数学期望的量纲是一致的, 所以变异系数是一个无量纲的量,原创 2024-02-10 23:06:41 · 878 阅读 · 0 评论 -
概率论与数理统计教程(三)-多维随机变量及其分布01:多维随机变量及其联合分布
在有些随机现象中, 对每个样本点 ω\omegaω 只用一个随机变量去描述是不够的.譬如要研究儿童的生长发育情况, 仅研究儿童的身高 X(ω)X(\omega)X(ω)或仅研究其体重 Y(ω)Y(\omega)Y(ω) 都是局部的, 有必要把 X(ω)X(\omega)X(ω) 和Y(ω)Y(\omega)Y(ω) 作为一个整体来考虑, 讨论它们同时变化的统计规律性,进一步可以讨论 X(ω)X(\omega)X(ω) 与 Y(ω)Y(\omega)Y(ω) 之间的关系. 在有些随机现象中,甚至要同原创 2024-02-10 23:07:08 · 1318 阅读 · 0 评论 -
概率论与数理统计教程(三)-多维随机变量及其分布02:边际分布与随机变量的独立性
§ 3.2 边际分布与随机变量的独立性二维联合分布函数 (二维联合分布列、二维联合密度函数也一样)含有丰富的信息,主要有以下三方面信息:- 每个分量的分布 (每个分量的所有信息), 即边际分布.- 两个分量之间的关联程度, 在 §3.4§ 3.4§3.4 中用协方差和相关系数来描述.- 给定一个分量时,另一个分量的分布,即条件分布.我们的目的是将这些信息从联合分布中挖掘出来, 本节先讨论边际分布.3.2.1 边际分布函数如果在二维随机变量 (X,Y)(X, Y)(X,Y) 的联合分布函数 F原创 2024-02-10 23:07:50 · 1378 阅读 · 0 评论 -
概率论与数理统计教程(三)-多维随机变量及其分布03:多维随机变量函数的分布
§3.3 多维随机变量函数的分布设 (X1,X2,⋯ ,Xn)\left(X_{1}, X_{2}, \cdots, X_{n}\right)(X1,X2,⋯,Xn) 为 nnn 维随机变量, 则(X1,X2,⋯ ,Xn)\left(X_{1}, X_{2}, \cdots, X_{n}\right)(X1,X2,⋯,Xn) 的函数Y=g(X1,X2,⋯ ,Xn)Y=g\left(X_{1}, X_{2}, \cdots, X_{n}\right)Y=g(X1,X2,⋯,Xn)是一维原创 2024-02-10 23:18:58 · 578 阅读 · 0 评论 -
概率论与数理统计教程(三)-多维随机变量及其分布04:多维随机变量的特征数01【多维随机变量函数的数学期望、数学期望与方差的运算性质】
下面的定理 3.4.1 也起着很重要的作用. 利用此定理, 可以省略求随机变量函数。类似于一维随机变量的特征数, 多维随机变量也有特征数, 除了各个分量的期望、将一个随机变量写成几个随机变量的和, 然后再利用数学期望的性质去进行计算,方差、标准差以外, 还有两个随机变量间的关联程度, 即协方差与相关系数,这个性质可简单叙述为: 在独立场合,随机变量乘积的数学期望等于数学期望的。注意, 利用定理 3.4.1, 虽然可以省略求随机变量函数的分布,此定理的证明涉及更多的工具, 在此省略了. 为简单起见,原创 2024-02-10 23:19:55 · 569 阅读 · 0 评论 -
概率论与数理统计教程(三)-多维随机变量及其分布04:多维随机变量的特征数02【协方差、相关系数、随机向量的数学期望向量与协方差矩阵】
3.4.3 协方差二维联合分布中除含有各分量的边际分布外, 还含有两个分量间相互关系的信息.描述这种相互关联程度的一个特征数就是协方差, 它的定义如下:定义 3.4.1 设 (X,Y)(X, Y)(X,Y) 是一个二维随机变量, 若 E[(X−E(X))(Y−E(Y))]E[(X-E(X))(Y-E(Y))]E[(X−E(X))(Y−E(Y))]存在,则称此数学期望为 XXX 与 YYY 的协方差, 或称为 XXX 与 YYY 的相关(中心) 矩, 并记为Cov(X,Y)=E[(X−E(X))原创 2024-02-11 13:27:28 · 668 阅读 · 0 评论 -
概率论与数理统计教程(三)-多维随机变量及其分布05:条件分布与条件期望
§ 3.5 条件分布与条件期望二维随机变量 (X,Y)(X, Y)(X,Y) 之间主要表现为独立与相依两类关系.由于在许多问题中有关的随机变量取值往往是彼此有影响的,这就使得条件分布成为研究变量之间的相依关系的一个有力工具.3.5.1 条件分布对二维随机变量 (X,Y)(X, Y)(X,Y) 而言,所谓随机变量 XXX 的条件分布,就是在给定 YYY取某个值的条件下 XXX 的分布. 蹵如, 记 XXX 为人的体重, YYY 为人的身高, 则XXX 与 YYY 之间一般有相依关系. 现在如果限原创 2024-02-10 23:20:55 · 721 阅读 · 0 评论 -
概率论与数理统计教程(四)-大数定理与中心极限定理01:随机变量序到的两种收敛性
§ 4.1 随机变量序列的两种收敛性随机变量序列的收玫性有多种,其中常用的是两种:依概率收玫和按分布收玫.本章讨论的大数定律涉及的是一种依概率收玫,中心极限定理涉及按分布收玫. 这些极限定理不仅是概率论研究的中心议题,而且在数理统计中有广泛的应用.本节将给出这两种收玫性的定义及其有关性质,读者应从中吸收其思考问题的方法.4.1.1 依概率收敛在第一章用频率确定概率时, 我们提出 “概率是频率的稳定值”, 或“频率稳定于概率”.现在我们来解释 “稳定” 的含义及其数学表达式.设有一大批产品,原创 2024-02-10 23:22:14 · 584 阅读 · 0 评论 -
概率论与数理统计教程(四)-大数定理与中心极限定理02:特征函数
§4.2§ 4.2§4.2 特征函数设 p(x)p(x)p(x) 是随机变量 XXX 的密度函数, 则 p(x)p(x)p(x) 的傅里叶 (Fourier) 变换是φ(t)=∫−∞∞eitxp(x)dx,\varphi(t)=\int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i} t x} p(x) \mathrm{d} x,φ(t)=∫−∞∞eitxp(x)dx,其中 i=−1\mathrm{i}=\sqrt{-1}i=−1 是虚数单位. 由数学期望的概念原创 2024-02-10 23:23:11 · 605 阅读 · 0 评论 -
概率论与数理统计教程(四)-大数定理与中心极限定理03:大数定理
§4.3§ 4.3§4.3 大数定律大数定律有多种形式, 下面从最简单的伯努利大数定律说起,逐步介绍各种大数定律.4.3.1 伯努利大数定律记 SnS_{n}Sn 为 nnn 重伯努利试验中事件 AAA 出现的次数, 称Snn\frac{S_{n}}{n}nSn 为事件 AAA 出现的频率.如果记一次试验中 AAA 发生的概率为 ppp, 则 SnS_{n}Sn 服从二项分布b(n,p)b(n, p)b(n,p), 因此频率 Snn\frac{S_{n}}{n}nSn 的数学期望与原创 2024-02-10 23:25:19 · 549 阅读 · 0 评论 -
概率论与数理统计教程(四)-大数定理与中心极限定理04:中心极限定理
§ 4.4 中心极限定理4.4.1 独立随机变量和大数定律讨论的是在什么条件下,随机变量序列的算术平均依概率收玫到其均值的算术平均.现在我们来讨论在什么条件下, 独立随机变量和Yn=∑i=1nXiY_{n}=\sum_{i=1}^{n} X_{i}Yn=i=1∑nXi的分布函数会收玫于正态分布. 以下我们先给出一个独立随机变量和的例子.例 4.4.1 误差是人们经常遇到且感兴趣的随机变量,大量的研究表明,误差的产生是由大量微小的相互独立的随机因素叠加而成的.臂如一位操作者在机床上加工机原创 2024-02-10 23:26:25 · 494 阅读 · 0 评论 -
概率论与数理统计教程(五)-统计量及其分布01:总体与样本
在有些问题中,我们对每一研究对象可能要观测两个甚至更多个指标,此时可用多维随机向量及其联合分布来描述总体,这种总体称为多维总体.我们要了解某校大学生的三个指标:年龄、身高、体重,则我们可用一个三维随机向量描述该总体.这是一个三维总体,对无限总体,代表性与独立性容易实现,关键在于排除有意或无意的人为干扰.对有限总体,理, 它能简明把要地表示样本, 使人们能更好地认识总体, 这是分组样本的优点.) 进行观测, 于是, 对每个元件, 我们只能观测到其寿命落在某个范围内,原创 2024-02-10 23:27:53 · 621 阅读 · 0 评论 -
概率论与数理统计教程(五)-统计量及其分布02:样本数据的整理与显示
左右的样本可分 7 到 10 组,容量为 200 左右的样本可分 9 到 13 组, 容量为。这样就得到频数直方图, 图 5.2 . 2 画出了例 5.2 . 2 的频数直方图. 若把。图 5.2.3 测试成绩的茎叶图生产的产品数量 (表 5.2.2). 为对其进行比较,在图 5.2.4 中, 茎在中间, 左边表示甲车间的数据, 右边表示乙车间的数据.更深刻的结果也是存在的, 这就是格利文科定理, 下面我们不加证明地加以介绍.个,对容量较小的样本, 通常将其分为 5 组或 6 组, 容量为 100。原创 2024-02-10 23:28:50 · 426 阅读 · 0 评论 -
概率论与数理统计教程(五)-统计量及其分布03:统计量及其分布
§5.3§ 5.3§5.3 统计量及其分布5.3.1 统计量与抽样分布样本来自总体,因此样本中含有总体各方面的信息,但这些信息较为分散,有时显得杂乱无章.为将这些分散在样本中的有关总体的信息集中起来以反映总体的各种特征,需要对样本进行加工, 表和图是一类加工形式,它使人们从中获得对总体的初步认识.当人们需要从样本获得对总体各种参数的认识时,更有效的加工方法是构造样本的函数,不同的样本函数反映总体的不同特征.定义 5.3.1 设 x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots原创 2024-02-10 23:29:43 · 566 阅读 · 0 评论 -
概率论与数理统计教程(五)-统计量及其分布04:三大抽样分布
§ 5.4 三大抽样分布大家很快会看到, 有很多统计推断是基于正态分布的假设,以标准正态变量为基石而构造的三个著名统计量在实际中有广泛的应用,这是因为这三个统计量不仅有明确背景,而且其抽样分布的密度函数有显式表达式, 它们被称为统计中的"三大抽样分布".若设 x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots, x_{n}x1,x2,⋯,xn 和 y1,y2,⋯ ,ymy_{1}, y_{2}, \cdots, y_{m}y1,y2,⋯,ym是来自标准正态分布的两个相互独原创 2024-02-10 23:31:02 · 630 阅读 · 0 评论 -
概率论与数理统计教程(五)-统计量及其分布05:充分统计量
§5.5 充分统计量5.5.1 充分性的概念构造统计量就是对样本进行加工, 去粗取精, 简化样本, 便于统计推断. 但在加工过程中是否会丢失样本中关于感兴趣问题的信息?如果某个统计量包含了样本中关于感兴趣问题的所有信息,则这个统计量对将来的统计推断会非常有用,这就是充分统计量的直观含义,它是费希尔于 1922 年正式提出的, 而其思想则源于他与天文学家埃丁顿(Eddington) 的有关估计标准差的争论中. 设 x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots, x_{n}x1,原创 2024-02-10 23:32:05 · 840 阅读 · 0 评论 -
概率论与数理统计教程(六)-参数估计01:点估计的概念与无偏性
(对某些样本观测值) 为正, 时而 (对另一些样本观测值) 为负, 时而大, 时而小.无偏性表示, 把这些偏差平均起来其值为 0 , 这就是无偏估计的含义.只要它满足一定的合理性即可. 最常见的合理性要求是所谓的无偏性.是总体方差的无偏估计. 这种简单的修正方法在一些场合常被采用.因此人们常用无偏估计的方差的大小作为度量无偏估计优劣的标准,并不是所有的参数都存在无偏估计, 当参数存在无偏估计时,的渐近无偏估计, 从而在样本容量较大时, 不经修正的。的渐近无偏估计, 这表明当样本量较大时,原创 2024-02-11 00:12:46 · 825 阅读 · 0 评论 -
概率论与数理统计教程(六)-参数估计02:矩估计及相合性
§ 6.2 矩估计及相合性6.2.1 替换原理和矩法估计1900 年 K.皮尔逊提出了一个替换原理, 后来人们称此方法为矩法.替换原理常指如下两句话:- 用样本矩去替换总体矩, 这里的矩可以是原点矩也可以是中心矩.- 用样本矩的函数去替换相应的总体矩的函数.根据这个替换原理,在总体分布形式未知场合也可对各种参数作出估计, 譬如:- 用样本均值 xˉ\bar{x}xˉ 估计总体均值 E(X)E(X)E(X).- 用样本方差 s2s^{2}s2 估计总体方差 Var(X)\operatorna原创 2024-02-11 00:13:12 · 1462 阅读 · 0 评论 -
概率论与数理统计教程(六)-参数估计03:最大似然估计与EM算法
§ 6.3 最大似然估计与 EM 算法最大似然估计 (MLE) 最早是由德国数学家高斯 (Gauss) 在 1821年针对正态分布提出的, 但一般将之归功于费希尔, 因为费希尔在 1922年再次提出了这种想法并证明了它的一些性质而使得最大似然法得到了广泛的应用.本节将给出最大似然估计的定义与计算及求取某些复杂情况下 MLE的一种有效算法------M 算法, 并介绍最大似然估计的渐近正态性.6.3.1 最大似然估计为了叙述最大似然原理的直观想法, 先看两个例子.例 6.3.1 设有外形完全相原创 2024-02-11 00:13:39 · 617 阅读 · 0 评论 -
概率论与数理统计教程(六)-参数估计04:最小方差无偏估计
§ 6.4 最小方差无偏估计我们已经看到, 寻求点估计有各种不同的方法,为了在不同的点估计间进行比较选择, 就必须对各种点估计的好坏给出评价标准.统计学中给出了众多的估计量评价标准,对同一估计量使用不同的评价标准可能会得到完全不同的结论,因此,在评价某一个估计好坏时首先要说明是在哪一个标准下,否则所论好坏则毫无意义.6.4.1 均方误差相合性和渐近正态性是在大样本场合下评价估计好坏的两个重要标准,在样本量不是很大时, 人们更加倾向于使用一些基于小样本的评价标准, 此时,对无偏估计常使用方原创 2024-02-11 00:14:03 · 1377 阅读 · 0 评论 -
概率论与数理统计教程(六)-参数估计05:贝叶斯估计
§ 6.5 贝叶斯估计在统计学中有两个大的学派: 频率学派 (也称经典学派) 和贝叶斯学派.本书主要介绍频率学派的理论和方法,此一小节将对贝叶斯学派做些介绍.6.5.1 统计推断的基础我们在前面已经讲过,统计推断是根据样本信息对总体分布或总体的特征数进行推断,事实上, 这是经典学派对统计推断的规定, 这里的统计推断使用到两种信息:总体信息和样本信息; 而贝叶斯学派认为, 除了上述两种信息以外,统计推断还应该使用第三种信息:先验信息.下面我们先把三种信息加以说明.1. 总体信息总体信息即总体原创 2024-02-11 00:14:45 · 620 阅读 · 0 评论 -
概率论与数理统计教程(六)-参数估计06:区间估计
§6.6 区间估计参数的点估计给出了一个具体的数值, 便于计算和使用, 但其精度如何,点估计本身不能回答, 需要由其分布来反映. 实际中,度量一个点估计的精度的最直观的方法就是给出未知参数的一个区间,这便产生区间估计的概念.6.6.1 区间估计的概念设 θ\thetaθ 是总体的一个参数, x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots, x_{n}x1,x2,⋯,xn 是样本,所谓区间估计就是要找两个统计量θ^L=θ^L(x1,x2,⋯ ,xn)\hat{\theta}原创 2024-02-11 00:15:14 · 1263 阅读 · 0 评论 -
概率论与数理统计教程(七)-假设检验01:假设检验的基本思想与概念
第七章假设检验统计推断的另一个主要内容是 (统计) 假设检验 (hypothesis test).在这一章里我们将讨论 (统计) 假设的建立及其各种检验.假设检验是由 K. 皮尔逊(K.Pearson)于 20 世纪初提出的,之后由费希尔进行了细化, 并最终由奈曼 (Neyman) 和 E. 皮尔逊 (E.Pearson)提出了较完整的假设检验理论.§ 7.1 假设检验的基本思想与概念7.1.1 假设检验问题先从一个实例来考察假设检验的基本思想.例 7.1.1 (女士品茶试验)一种奶茶由原创 2024-02-11 00:15:38 · 728 阅读 · 0 评论 -
概率论与数理统计教程(七)-假设检验02:正态总体参数假设检验
§ 7.2 正态总体参数假设检验本节对正态总体参数 μ\muμ 和 σ2\sigma^{2}σ2 的各种检验分别进行讨论.7.2.1 单个正态总体均值的检验设 x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots, x_{n}x1,x2,⋯,xn 是来自 N(μ,σ2)N\left(\mu, \sigma^{2}\right)N(μ,σ2)的样本, 考虑如下三种关于 μ\muμ 的检验问题: I H0:μ⩽μ0 vs H1:μ>μ0, II H0:μ⩾μ0 vs H1:μ原创 2024-02-11 00:16:07 · 842 阅读 · 0 评论 -
概率论与数理统计教程(七)-假设检验03:其他分布参数的假设检验
我们可以仿例 7.3.1 的方法求拒绝域, 但要把此拒绝域找出来是困难的, 如今。在区间估计中也有类似问题.因此,使用大样本检验方法时要注意,尽量使样本足够大.的分位数建立检验的拒绝域, 对检验问题 (7.3.1), 拒绝域形式为。我们看到临界值的确定比较繁琐, 使用不太方便. 当然, 使用检验的。比较大, 因此可采用大样本检验方法. 由 (7.3.6) 式,近似的含义是指检验的实际显著性水平与原先设定的显著性水平有差距,很大, 故可以采用大样本检验, 泊松分布的均值和方差都是。原创 2024-02-11 00:16:31 · 590 阅读 · 0 评论 -
概率论与数理统计教程(七)-假设检验04:似然比检验与分布拟合检验
§ 7.4 似然比检验与分布拟合检验7.4.1 似然比检验的思想我们在前几节讲述的内容均是关于费希尔提出的显著性检验,类似于在估计中存在着多种估计一样, 在假设检验中, 也有多种检验方法,如奈曼和 E. 皮尔逊于 1928 年提出的似然比检验,它是一种应用较广的检验方法, 在假设检验中的地位有如 MLE 在点估计中的地位.定义 7.4.1 设 x1,x2,⋯ ,xnx_{1}, x_{2}, \cdots, x_{n}x1,x2,⋯,xn 为来自密度函数为p(x;θ),θ∈Θp(x ;原创 2024-02-11 00:16:55 · 1721 阅读 · 0 评论 -
概率论与数理统计教程(七)-假设检验05:正态性检验
§ 7.5 正态性检验正态分布是最常用的分布,用来判断总体分布是否为正态分布的检验方法称为正态性检验,它在实际问题中大量使用.接下来我们先叙述简单而又直观的正态性检验一一正态概率图, 然后介绍国家标准GB/T 4882-2001 中推荐的、并已被广泛应用的两种正态性检验方法------ 检验和EP 检验.7.5.1 正态概率纸正态概率纸是一种特殊的坐标纸, 其横坐标是等间隔的,纵坐标是按标准正态分布函数值给出的, 见图 7.5.1.正态概率纸可用来作正态性检验, 方法如下: 利用样本数据原创 2024-02-11 00:17:16 · 901 阅读 · 0 评论